Interpretation of Modified Electromagnetic Theory and Maxwell's Equations on the Basis of Charge Variation

Asif Ali Laghari
Departement of Electronics Engineering, Mehran University of Engineering and Technology, Pakistan

ABSTRACT
Electromagnetic waves are the analytical solutions of Maxwell's equations that represent one of the most elegant and concise ways to state the fundamentals of electricity and magnetism. From them one can develop most of the working relationships in the electric and magnetic fields. Considering deeply the effect of charge variation in Maxwell’s equations for time varying electric and magnetic fields of charges in moving inertial frame, the magnitude of charge particles vary according to Asif’s equation of charge variation. Consequently the Maxwell’s equations give different results to an observer measuring at rest. This research paper explained the effect of charge variation in Classical Electromagnetic theory, Maxwell’s equations, Coulomb’s law, Lorentz force law when we are referring to any inertial frame.

Keyword:
Coulomb’s force
Electric field
Electromagnetic force
Electromagnetic waves
Maxwell’s equation

1. INTRODUCTION
Maxwell’s equation are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These fields in turn underlie modern electrical and communications technologies. Maxwell's equations describe how electric and magnetic fields are generated and altered by each other and by charges and currents. They are named after the Scottish physicist and mathematician James Clerk Maxwell who published an early form of those equations between 1861 and 1862 [1]. The “microscopic” set of Maxwell's equations uses total charge and total current without considering charge variation when charges are moving with high speed due to relativistic effect on charge [2].

Consequently they gives different result when charges are in moving inertial frame. In this perspective, we have investigated the creation of electromagnetic wave by moving point charge or by time varying electric and magnetic field in the presence of charges at rest, uniform motion or in accelerated frame. The main and important consequence of Modified electromagnetic theory is that it also predicts the charge distorts space-time curvature as Einstein explained mass distorts space-time curvature in his general theory of relativity [3].

There are main two postulate of modified electromagnetic theory.
1. $\frac{e}{m}$ Ratio of any charged body with the mass “m” and charge “e” is constant for all observers regardless their state of motion.
2. Maxwell’s Electromagnetic wave equations of point charge without considering charge variation are not valid for moving frame with respect to rest observer.

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:
Asif Ali Laghari,
Department of Electronics Engineering,
Mehran University of Engineering and Technology, Jamshoro, Pakistan
Email: asifali_leghari@yahoo.com

2. ORIGIN OF COULOMB’S FORCE

It follows from coulomb’s law that electrostatic force between two charges is directly proportional to the product of two charges and inversely proportional to the square of the distance between them given by

\[F = \frac{kq_1q_2}{r^2} \]

(2.1)

Where ‘k’ is the coulomb’s constant. \(K = \frac{1}{4\pi\varepsilon_0} \). From Maxwell’s equation, substituting the value of \(\varepsilon_0 \) in above equation.

\[F = \mu_0c^2 \frac{q_1q_2}{4\pi r^2} \]

Let us assume that \(q_1 \) is the point charge and \(q_2 \) is fixed charge. Hence above equation can be written as.

\[F = \frac{\mu_0q_1 (q_2e^2)}{4\pi r^2} \]

(2.2)

The factor \((q_2e^2)\) appearing in the above equation is actual cause of coulomb’s force and is responsible for charge distorts space-time curvature as Einstein proposed that factor \((mc^2)\) appearing in Newton’s universal law of gravitation which was further explained by Einstein in his general theory of relativity causes mass distorts space-time curvature.

3. MODIFICATION IN LORENTZ FORCE LAW

It is generally expected from intuition that the electromagnetic force exerted on a charged particle should be invariant as observed in different inertia l frames. In terms of electric and magnetic fields the electromagnetic force exerted on a particle of charge \(q \) and velocity \(v \) is given by the famous Lorentz force law as \(F = q(E + v \times B) \). By resorting to the Lorentz transformation of space and time, it is known that the two fields together with the velocity transform in such a way that the Lorentz force is exactly identical to that given by the transformation of the time rate of change of kinematic momentum. That is, the Lorentz force law is Lorentz invariant. Furthermore, the wave equations of potential, the continuity equation, and the Lorentz gauge, which are fundamental equations in electromagnetic, can be shown to be Lorentz invariant.

Then, Maxwell’s equations can be shown to be invariant under the Lorentz transformation \[4\]. Consequently Lorentz force equation doesn’t involve charge variation when the charge particle moves in uniform electric and magnetic field and it is Lorentz invariant \[5\]. According to modern strategy of relativistic charge, Lorentz force equation must involve relativistic charge if charges are in moving frame.

Let us assume that charge is moving along y-axis in uniform electric and magnetic field along x-axis and y-axis respectively as shown in previous mentioned FIGure(1). Lorentz force equation is given by the following equation.

\[F = q_0(E + V \times B) \]

(3.1)

Where \(q_0 \) is rest charge. If the velocity of charge is very high as compared to speed of light for rest observer, So considering the effect of charge variation, replacing \(q_0 \) by the relativistic charge \(q \).

Therefore modified equation of Lorentz force is;

\[F = q(E + V \times B) \]

(3.2)

4. LORENTZ FORCE ON CONTINUOUS CHARGE DISTRIBUTION

For the continuous charge distribution, suppose that charges are distributed over small volume in moving with constant velocity in electromagnetic field, hence a very small force will act on a very small amount of charge with respect to rest observer, by taking differential;

\[df = dq \left[\gamma (v \times B) + E_0 \right] \]

(4.1)

Where \(\gamma \) is Lorentz factor described in Lorentz transformation
\[
\gamma = \sqrt{1 - \frac{v^2}{c^2}}
\]

Dividing both sides of equation 4.1 by a small volume ‘v’

\[
\frac{\mathrm{df}}{\mathrm{dv}} = \frac{\mathrm{dq}}{\mathrm{dv}} \left[\gamma (\mathbf{v} \times \mathbf{B}) + \mathbf{E}_0 \right]
\]

Or

\[
\frac{\mathrm{df}}{\mathrm{dv}} = \left[\gamma (\mathbf{\rho v} \times \mathbf{B}) + \mathbf{E}_0 \right] \mathrm{dv}
\]

Because \(\mathbf{\rho v} = \mathcal{T}\) (current density) described in Maxwell’s equation. To find total force acting on total charge enclosed by the surface \(\mathrm{ds}\) in the volume \(\mathrm{dv}\) can be achieved by taking volume integral as.

\[
F = \int \left[\gamma (\mathcal{T} \times \mathbf{B}) + \mathbf{E}_0 \right] \mathrm{dv}
\]

(4.2)

5. ELECTROMAGNETIC FORCE BETWEEN TWO CHARGES IN MOVING INERTIAL FRAME

Consider two same charges are in rest frame \(S\), only repulsive electrostatic force exists between them as shown in the figure 1. Below:

![Figure 1. Coulomb’s force between two identical charges in rest frame \(S\) measured by rest observer](image)

If two same charges are in moving inertial frame \(S’\), each charge experiences repulsive electrostatic force, but due to the dumbbell shape magnetic field of two charges parallel to x-z plane in \(S’\) frame, they will attract each other with respect to rest observer as shown in Figure 2. Below:

![Figure 2. Magnetic force \(F_B\) and relativistic coulomb’s force \(F_E\) measured by rest observer when two identical charges are in moving inertial frame \(S’\)](image)

Here we are concerned with \(S’\) frame, to find the net force between two charges, we consider relativistic charge in coulomb’s law as given in the following equation.

\[
F_E = qE
\]

(5.1)

Magnetic field of a relativistic charge is given by.

\[
\mathbf{B} = \frac{\mu}{4\pi r^2} \mathbf{qv}
\]
Force on point charge due to magnetic field is given by the cross product of magnetic field and velocity as follow.

\[F_B = q (V \times B) \]

Taking ratio between electric and magnetic force, we arrive at the following result.

\[\frac{F_E}{F_B} = \frac{v \times B}{E} = \frac{v^2}{c^2} \]

(5.2)

Magnitude of charge in moving frame measured by rest observer is given by Asif’s equation of charge variation.

\[q = \frac{q_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]

By re arranging this equation, we want to drive the value of \(\frac{v^2}{c^2} \) as follows.

\[\frac{v^2}{c^2} = 1 - \left(\frac{q_0^2}{q^2} \right) \]

(5.3)

Substituting equation 5.3 in 5.2. We have

\[\frac{v \times B}{E} = 1 - \left(\frac{q_0^2}{q^2} \right) \]

After solving, we get the following equation.

\[qE = qvB + q_0E_0 \]

(5.4)

This equation shows that coulomb’s force (electric force) between two charges in S’ frame measured by rest observer is the sum of the coulombs force between two charges in S frame and magnetic force of two charges in S’ frame.

And magnetic force between two charges in S’ frame measured by rest observer is given by.

\[qvB = qE - q_0E_0 \]

(5.5)

Equation 5.5 describe that the magnetic force between two charges in S’ frame is actually the difference of the relativistic coulomb’s force in S’ frame and the rest coulomb’s force in S frame.

From equation 5.2. When \(v = c \), then

\[\frac{qvB}{qE} = 1 \]

When charges are in moving frame, the charge on the particle varies with respect to rest observer. By applying Faraday’s law, one can deduct that the change in the electric charge causes change in the electric field and hence for rest observer, magnetic field is generated around each charge in moving frame. That’s why the rest observer experience magnetic force between two charges during motion.

6. **MAXWELL’S EQUATION IN MOVING INERTIAL FRAME**

6.1. **Divergence and Curl of Magnetic Field of a Point Charge in Moving Frame**

In electromagnetic wave theory, the divergence of a magnetic field is always equal to zero because there is no mono pole magnet [6]. But in case of a single charge in moving inertial S’ frame along y-axis as shown in following Figure 3. Below:
let us assume that it produce magnetic field in concentric circles around it with respect to rest observer. The divergence of that magnetic field measured by rest observer is given by.

\[\nabla \cdot B = \lim_{\gamma \to 0} \frac{\phi B \cdot ds}{\gamma} \]

Substituting \(B = \frac{\mu_0}{4\pi r^2} qv \), hence

\[\nabla \cdot B = \mu_0 \sigma v \]

\[\nabla \cdot B = \mu_0 f \quad \text{(6.1)} \]

Here is the relativistic current density, which depends upon both “Relativistic charge density and velocity”. Note that Relativistic charge density varies with the change in the electric charge or change in the volume or both.

The curl of magnetic field of a moving charge point charge is given by.

\[\nabla \times B = \lim_{A \to 0} \frac{\phi B \cdot da}{A} \]

Substituting \(B = \frac{\mu_0}{4\pi r^2} qv \). For the continuous charge distribution (configuration) in the small region of area \(A \to 0 \), the above equation becomes.

\[\nabla \times B = \mu_0 \sigma v \quad \text{(6.2)} \]

6.2. Electric Flux of Relativistic Electric Field

From Maxwell’s point charge equation or Gausses law, one can deduct the total electric flux of charge out of the closed surface at rest which is \(\frac{\rho}{\epsilon_0} \), suppose we want to demonstrate electric flux when charge is in moving inertial frame \(S' \) shown in above FIGure 3. It follows from equation 5.5. By eliminating relativistic charge and taking divergence to get total relativistic electric flux of charge.

\[\nabla \cdot E = \lim_{\gamma \to 0} \oint_S \frac{E \cdot ds}{\gamma} = \oint_S \frac{(\nabla \times B) \cdot \gamma ds}{\gamma^2} + \gamma \oint_S \frac{E_0 \cdot ds}{\gamma} \]

\[\nabla \cdot E = \mu_0 \sigma_0 + \gamma \oint_S \frac{E_0 \cdot ds}{\gamma} \quad \text{(6.3)} \]

Using divergence theorem to get electric flux. We have

\[\oint_S E \cdot ds = \mu_0 qv^2 + \gamma \frac{q_0}{\epsilon_0} \quad \text{(6.4)} \]

\[\oint_S E \cdot ds = \frac{qv^2}{\epsilon_0 c^2} + \gamma \frac{q_0}{\epsilon_0} \quad \text{(6.5)} \]

Putting value of gamma and after solving, we get

\[\oint_S E \cdot ds = \frac{\rho}{\epsilon_0} \quad \text{(6.6)} \]
This is the point form of Maxwell’s equation or Gauss’s law in integral form. Where \(\rho \) is the relativistic charge density, which varies with the velocity of charges distributed in definite volume due to charge variation and length contraction according to special relativity.

7. CONCLUSION

In this study, we have investigated a Modified Electromagnetic theory that modifies quantum electrodynamics and classical electromagnetic theory. This led us to modify to Lorentz force law, Maxwell’s equations of point charge that gives correct result in rest frame will give different result in moving frames as discussed in this paper. The paper then discussed about the origin of electrostatic and electromagnetic forces between charges.

The interesting result found from coulomb’s law is the factor \(q_c^2 \) which is the actual cause of attraction and repulsion between two charges in space as \(mc^2 \) is the actual cause of gravitational force that appears in some Einstein’s field equations that describe mass distorts space-time curvature in theory of General relativity.

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Ameer Ali Laghari, Eng. Majid Ali Laghari and Zahid Ali Laghari whose suggestions and continuous encouragement related to the above work helped me immensely to investigate and further refine the conjecture presented in this paper. The discussions I had with them while they were reviewing the work led me to develop a formidable set of mathematical models to better represent the said conjecture.

REFERENCES

BIOGRAPHY OF AUTHOR

Asif Ali Laghari, he is undergraduated student of Electronics Engineering in Mehran University of Engineering and Technology, Jamshoro Pakistan. He has been doing research in the fields of Electromagnetic theory and Radiating Systems, theory of Special and General relativity, Quantum Electrodynamics, Mathematical modeling of physical systems from last 5-years. He is the first who introduced the concept of charge variation in his first research paper that has been published by International Organization of Scientific Research in July 2013.
Email: asifali_leghari@yahoo.com