On-body Transmission Single-band Diamond Dipole Antenna with Waveguide Jacket

M. A. Abdullah1, M. K. A Rahim2, N. A. Samsuri3, K. Kamardin4
1,2,3Communication Engineering Department, Faculty of Electrical Engineering, University Technology Malaysia, 81310 Johor Bahru, Johor, Malaysia
4Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
4Wireless Communication Centre, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia

ABSTRACT
This paper presents the investigation of on-body transmission single-band diamond dipole antenna with three different jackets. The jackets are named as normal jacket, grounding jacket and waveguide jacket. The on-body transmission is measured using two flexible single-band antennas attach to the jackets. A man with the height of 180 cm and 75 kg weight becomes as a model for the real measurement. The measurement is conducted in small space area by using portable network analyzer with flexible network cable. The measurement results show that the best performance for on-body transmission is with waveguide jacket. 10 dB transmission improvement is archived when the antenna is placed above the waveguide jacket compared to the normal jacket. It is found that the transmission of the antenna is also depends on the antenna orientation and further transmission losses occur when the antennas are placed above the grounding jacket.

Keywords:
Dipole
Single-band
Transmission
Waveguide

1. INTRODUCTION
Nowadays, human body has become a part of wearable wireless networking devices as the electronic devices become smaller and cheaper. Since human body becomes a part of communication network, the integration of wireless sensor network (WSN) and wireless personal area network (WPAN) become body-centric wireless communication.

Due to complexity of the human body, many researchers around the world interested to investigate in this body-centric wireless communication area. Firstly, some fabric antennas have been investigated by [1]-[3] since 1999. They are using felt fabric as substrate and Zelt fabric as conducting element. However, the performance of the antenna deteriorated when the antenna is put above the human body [4]. The bulky size of coaxial port that has been used in [5-6] also is not suitable for wearable application.

Theoretically, the main characteristic of an artificial magnetic conductor (AMC) to influence the propagation electromagnetic waves is in-phase reflection coefficient [7]. Previous researchers have presented that the AMC may reduce the backward radiation and improve the gain of the antenna [8]-[9]. Then, sheet-like waveguide sheet is proposed by [10]-[13], 16 to reduce the distortion from the human body. The waveguide sheet is consisted of array of AMC. The function of the sheet-like waveguide is to reduce the transmission losses between the antennas.

In this paper, two single-band textile diamond dipole antenna which are operating at 2.4 GHz and 5.8 GHz are used to investigate the S21 transmission above three different jackets; normal jacket, grounding
jacket and waveguide jacket. S21 transmission is measured in horizontal and vertical orientation for all jackets. The performance of the transmission for the jackets are compared and discussed.

2. MEASUREMENT SETUP

Two single-band diamond dipole antennas which are operated at 2.4 GHz and 5.8 GHz respectively have been used to be incorporated with three different jackets as shown in Figure 1. The jackets are made of fleece fabric named as normal jacket, grounding jacket and waveguide jacket. Normal jacket is a plain jacket while grounding jacket has attached with full ground plane fabric. The waveguide jacket is an array of AMC design from my previous work [4].

![Image of jackets and antennas](image)

(a) Normal jacket (b) Grounding jacket (c) Waveguide jacket (d) Antennas

Figure 1. Overview of antennas and three different jackets

The orientation of the antenna is investigated above the jackets. The antennas are placed vertically and horizontally above each jacket as shown in Figure 2. One of the antennas is placed in the middle of the jacket which acts as a transmitter (Tx) while the other antenna (Rx) position is varied at eight different locations. The locations are labelled alphabetically from A to H as shown in Figure 3. The distance between the antennas is fixed at 14 cm.

![Image of antenna polarization](image)

(a) Horizontal polarization (b) Vertical polarization

Figure 2. Antenna polarization
The experiment is conducted in small space area. A man becomes a model to wear the jackets. During the experiment, he stands up and the transmission between the antennas is measured as shown in Figure 4. The gap between both antennas and the jacket is set to 3 mm by using a foam ($\sigma_r = 1$). Portable network analyser is used to measure the transmission performance of the antennas.

3. RESULTS AND DISCUSSIONS

The results are divided and analyzed into two sub-chapter. The first sub-chapter explains about 2.4 GHz antenna transmission while the 2nd sub-chapter elaborates about 5.8 GHz antenna transmission.

3.1. S21 Transmission of 2.4 GHz Textile Diamond Dipole Antenna

The S21 on-body transmissions of the antenna with three jackets were investigated. Graph in Figure 4 presents the S21 transmission of 2.4 GHz antenna with normal jacket in horizontal orientation. Figure 5(a) and Figure 5(b) denote the vertical arrangement respectively. Graphs in Figure 6 depict the measured S21 of antennas with grounding jacket while Graph in Figure 7 represents the measured S21 of antennas with waveguide jacket. Figures 6(a) and 7(a) represent for horizontal antenna orientation and figures 6(b) and 7(b) represent vertical antenna orientation.

When the antenna is placed horizontally, good transmission of the antenna observed at position A and E. For horizontal orientation, the S21 peaks are -32 dB and -33 dB for position A and E. Position C and G represent parallel arrangement in vertical orientation with S21 peaks at -30 dB and -32 dB at resonance. Graphs in Figure 5 show no transmission occurs between the antennas. The S21 peaks at -60 dB for both horizontal and vertical orientation which is at noise level. Finally positions A and E represent parallel arrangement in horizontal orientation with S21 peaks at -24 dB and -20 dB above the waveguide jacket while positions C and G in vertical orientation with S21 peaks at -24 dB and -24 dB.

Graphs in Figure 8 show the comparison of measured S21 results from Figure 5 to 7. The best performance of S21 transmission from graphs in Figure 5 to Figure 7 is compared. It shows that the S21 peaks are improved by 8 dB and 13 dB at resonance for horizontal orientation. For vertical horizontal, 6 dB and 8 dB improvement is achieved when the antenna is placed above the waveguide jacket. When the antennas are placed above the normal jacket, the transmission is disturbed by the presence of human body. The waveguide jacket acts as a path for the wave to propagate between the antennas and improve the transmission.
On-body Transmission Single-band Diamond Dipole Antenna with Waveguide Jacke (M. A. Abdullah)

Figure 5. Measured S_{21} of 2.4 GHz textile diamond dipole above normal jacket

Figure 6. Measured S_{21} of 2.4 GHz textile diamond dipole above grounding jacket

Figure 7. Measured S_{21} of 2.4 GHz textile diamond dipole above waveguide jacket
3.2. S_{21} Transmission of 5.8 GHz Textile Diamond Dipole Antenna

The measured S_{21} transmissions are plotted in Figure 9 to Figure 11 for antenna above normal jacket, grounding jacket and waveguide jacket. Figure 9(a), 10(a) and 11(a) show the 5.8 GHz diamond dipole’s transmission results in horizontal orientation while Figure 9(b), 10(b) and 11(b) depict the vertical horizontal.

Among the 8 positions varied, the best transmission is obtained when the antenna placed in parallel arrangement. For horizontal orientation, positions A and E represent the parallel arrangement and position C and G for vertical orientation. When the antennas are placed above the grounding jacket, the transmission occurs at the noise floor level. Transmission improvements at resonance 5.8 GHz are observed at both horizontal and vertical orientations. From the horizontal orientation results, the S_{21} peaks are -28 dB and -30 dB with improvement of 10 dB and 8 dB from the transmission above the normal jacket. The comparison S_{21} results in vertical orientation are shown in Figure 12(b). The S_{21} peaks are -37 dB and -34 dB for position C and G above the normal jacket while -28 dB for both position C and G above the waveguide jacket.

From the presented results, the presence of waveguide jacket improves the antennas’ transmission compared to normal jacket. The structures of the waveguide jacket itself which is artificial magnetic conductor (AMC) help the wave to propagate through it.

(a) Horizontal orientation
(b) Vertical orientation

Figure 8. Comparison of Measured S_{21} of 2.4 GHz textile diamond dipole above different jackets

Figure 9. Measured S_{21} of 5.8 GHz textile diamond dipole above normal jacket
On-body Transmission Single-band Diamond Dipole Antenna with Waveguide Jacke (M. A. Abdullah)
4. CONCLUSION
In conclusion, two single-band textile diamond dipole antenna with normal jacket, grounding jacket and waveguide jacket have been measured and investigated. The position of the antenna determined the transmission of the antenna. 10 dB improvement when both antennas in the same. The waveguide jacket provides clear transmission path and reduces transmission loss. The in-phase reflection characteristic in waveguide jacket is predicted to enhance the transmission between the antennas. Meanwhile, the ground jacket is not suitable for antenna propagation as presented in the results.

ACKNOWLEDGEMENTS
The authors wish to thank the Research Management Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM) and the Malaysian Ministry of Education (MOE) for providing the Grant (Vote No: 4F883 and 12H08).

REFERENCES
On-body Transmission Single-band Diamond Dipole Antenna with Waveguide Jacke (M. A. Abdullah)

INDONESIAN J ELECTRICAL ENGINEERING & COMPUTER SCIENCE
ISSN: 2502-4752

VOL. 15, NO. 3, SEPTEMBER 2017, PP. 1454-1460 ISSN: 1693-6930, ACCREDITED A BY DIKTI, DECREE NO: 58/DIKTI/Kep/2013

BIOGRAPHIES OF AUTHORS

Muhammad Azfar bin Abdullah received the B Eng. Degree in Electrical Engineering majoring in Telecommunication from University Technology Malaysia in 2010. From 2010 to 2011, he worked as a process engineer at Infineon Technologies Berhad in Kulim Kedah. HE obtained hi M. Eng Electrical Engineering from University Technology Malaysia in 2014. Currently he is studying PhD degrees in Electrical Engineering from Universiti Teknologi Malaysia. His research interest includes the areas of designing antenna, artificial magnetic conductor and wearable application. Muhammad Azfar bin Abdullah is a member of Board of Engineer Malaysia (BEM) and a member of IEEE (MIEEE).

Mohamad Kamal A Rahim received the B Eng. degree in Electrical and Electronic Engineering from University of Strathclyde, UK, in 1987. From 1987 to 1989, he worked as a Management Trainee at Sime Tyres Mergong Alor Star Kedah and Production Supervisor at Sime Shoes in Kulim Kedah. In 1989, he joined the Department of Communication Engineering, Faculty of Electrical Engineering Universiti Teknologi Malaysia Kuala Lumpur as an Assistant Lecturer A. He obtained his M.Eng Science from University of New South Wales Australia in 1992 and PhD degrees in Electrical Engineering from University of Birmingham UK in 2003. After he received his Master he was appointed as a Lecturer at Faculty of Electrical Engineering. In 2005 he was appointed as a senior lecturer and in 2007 he was appointed as Assoc Professor at the faculty. Now he is the Professor in RF and Antenna at Faculty of Electrical Engineering Universiti Teknologi Malaysia. His research interest includes the areas of designing antenna, artificial magnetic conductor and wearable application. Muhammad Azfar bin Abdullah is a member of Board of Engineer Malaysia (BEM) and a member of IEEE (MIEEE).

On-body Transmission Single-band Diamond Dipole Antenna with Waveguide Jacke (M. A. Abdullah)
students. 4 Phd and 42 Master students have been graduated through his supervision.

Noor Asmawati Samsuri received the B.Eng. (Hons) in Electrical-Telecommunication Engineering from Universiti Teknologi Malaysia in 2001, the MSc. in Digital Communications System from Loughborough University, UK in 2004 and the Ph.D. in Electronic and Electrical Engineering from Loughborough University, UK in 2009. She is presently a Senior Lecturer in the Faculty of Electrical Engineering, Universiti Teknologi Malaysia. Her research interests include wearable antennas including the interaction with human body and metallic items, implantable antenna for medical telemetry, and Specific Absorption Rate (SAR). During her carrier, she has been authored or co-authored several technical papers and book chapters related to her research interests. She has also been appointed as a reviewer for several journal papers at National and International level. Noor Asmawati Samsuri is a member of Board of Engineer Malaysia (BEM) and a member of IEEE (MIEEE), and is currently supervising a PhD, Master and Undergraduate students.

Kamilia Kamardin received her B.Eng. Electronic (Communications) from the University of Sheffield, U.K., in 2004 and obtained her M.Sc. in Information Technology (Data Communications and Networking) from Universiti Teknologi Mara (UiTM), Malaysia in 2007. She received her Ph.D. in Electrical Engineering (Communications) from Universiti Teknologi Malaysia (UTM), Malaysia in 2014. She spent 3 months at University of Birmingham, U.K., as a visiting Ph.D. student. She has previously served as a senior assistant researcher at TM Research & Development, Malaysia for 3 years. Currently she is a senior lecturer at Universiti Teknologi Malaysia, Kuala Lumpur. She serves under Computer Systems Engineering Group at Advanced Informatics School. Her research interests include antennas, wireless communication, wearable communication, body centric communication, metamaterials, wireless networking, Internet of Things (IoT) and computer systems engineering.