Active contour model for satellite image segmentation using a local and global signed pressure force

Mouri Hayat, Fizazi Hadria
Faculté des mathématiques et informatique, Université des Sciences et de la Technologie Mohamed Boudiaf, Algeria

ABSTRACT
Global and local image information is crucial for accurate segmentation of images with intensity inhomogeneity valuable minute details and multiple objects with various intensities. We propose a region-based active contour model which is able to utilize together local and global image information. The major contribution of this paper is to expand the LIF model which includes only local image information to a local and global model. The introduction of a new local and global signed pressure force function enables the extraction of accurate local and global image information and extracts multiple objects with several intensities. Several tests performed on some synthetic and real images indicate that our model is effective as well as less sensitivity to the initial contour location and less time compared with the related works.

Keywords:
- Global signed pressure force
- Image segmentation
- Intensity inhomogeneity
- LIF model
- Local

1. INTRODUCTION
It is quite normal that the crucial step needed for many vision applications by computer and image processing is Segmentation of images. Within this framework, this paper aims at developing models dealing with problems of detecting objects (segmenting images) characterized by intensity inhomogeneity which represents an intensity variation in the regions of images and makes segmentation difficult. Divergent techniques have been proposed [1-2] and currently, active contour model (ACM) [1, 3-6] is the most method used in image processing in view of the quality and of the results it offers. In fact, the basis of the ACM is evolving a curve under some constraints from a given image to match the shape of the desired objects, by minimizing energy functional. Theoretically, ACMs are classified into two main categories: edge-based [1, 3, 4, 6, 7-10] and region-based [5, 11-17].

The primary work of Edge-based models is the detection of contours which approximate discontinuities of the gray level, color, texture. So they use the gradient image by evolving the curve to reach the edges of interest object. Within this type, geodesic active contour (GAC) [4] is one of the most accurate techniques. GAC meets difficulty when dealing with the objects having blurred or discrete boundaries and it hardly segments the object corrupted by noise [18], although it has been effectively applied for images with high variation in gradient at the contours of the objects.

Unlike edge-based models that look for dissimilarities, the region-based models rather look for similarity. These approaches provide a map of closed areas. They utilize image statistics inside and outside the curve to control the evolution. One of the famous region-based models is the [5] which is a simplified Mumford-Shah model [12]. The C-V model utilizes the global property of homogeneous regions. Thus, it has
good segmentation result for the objects with weak or discrete contours but often fails when the intensity inhomogeneity is present in image [19].

Some works using local image property are cited such as presented by Li et al in [19-20] and Wang et al in [22]. Li et al introduces a local binary fitting (LBF) energy by using local mean intensity property instead of global ones. Furthermore, Wang et al illustrates Local image intensities by local Gaussian distributions (LGD). Therefore, this two models gives more robustness when the inhomogeneity dominates the images. However, they can be falling in local minimums and in addition the result is more dependent on the contour initialization.

In [23] a local image fitting model is presented for segmenting images with no uniform intensity where the authors define the local image property on the differences between the fitting image [20-21] and the original one. Additionally, Gaussian filtering is introduced for regularizing the level-set function. It ensures a uniform evolution equation, and eliminates the requirement of resetting the curve evaluation, which is very computationally expensive.

Other hand, a region-based active contour methods are formulated in [24-25, 28] by utilizing a signed pressure force (SPF) function based on the two global and local intensity means respectively. The first model is used in order to handle non homogeneity. However, the second model is effective for noisy images. The Gaussian kernel is introduced in their equation of level set to stabilize it. Thus, it doesn’t require re-initialization at each step.

Our contribution is to present a new a local (ACM) inspired from [23]. Our method is not based only on the local property of the fitted image but we will also consider the global one. Furthermore, we multiply the difference local and global fitted images expressions to formulate the energy functional. After minimizing this functional, we replace the difference local and global fitted images with the local and global signed pressure force (SPF) functions in the variational level set equation. Both local and global (SPF) functions are used for detecting regions with intensity inhomogeneous and ones homogenous respectively. For reducing the computational time and accelerate the convergence of the evolution equation, we apply the Gaussian kernel to regularize the contour at each iteration.

2. RELATED WORK

2.1. Chan-Vese (CV) Model

The energy of CV model is given as follow:

\[
F^{CV}(C, c_1, c_2) = \lambda_1 \int_{\text{outside}(C)} |I(x) - c_1|^2 \, dx + \lambda_2 \int_{\text{inside}(C)} |I(x) - c_2|^2 \, dx + \gamma |C|
\]

(1)

Where outside (C) and inside (C) represents the regions outside and inside the curve C, respectively. c1 and c2 designate two constants that approximate the image intensities in outside(C) and inside (C), respectively. \(\lambda_1, \lambda_2 \) are fixed constants. The third term is the length of the curve. After minimizing (1) by using the descent gradient [27], the (1) is expressed as the zero level set evolution curve and the corresponding level set equation is:

\[
\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\mu \text{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \lambda_1 (I - c_1)^2 - \lambda_2 (I - c_2)^2 \right]
\]

(2)

where c1 and c2 can be updated at every iteration by:

\[
c_1(\phi) = \frac{\int H(\phi) I(x) \, d\Omega}{\int H(\phi) \, d\Omega}
\]

(3)

\[
c_2(\phi) = \frac{\int (1 - H(\phi)) I(x) \, d\Omega}{\int (1 - H(\phi)) \, d\Omega}
\]
In practice, the Heaviside function and Dirac function are smoothed by:

\[
H(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}
\]

\[
\delta(x) = \frac{d}{dx} H(x)
\]

Because the CV model uses the global property so they give to CV model a good performance when segmenting images with weak edges and noise. However it fails when the inhomogeneity strongly exists in the image since it doesn’t incorporate local property.

2.2. Local Binary Fitted (LBF) Model
The LBF model which is proposed by Li et al. in [20-21] utilizes two spatially varying fitting functions \(f_1(x) \) and \(f_2(x) \) to approximate the local intensities on the two sides of the contour. And the image fitting energy function was defined as follows:

\[
E_{LBF} = \lambda_1 \int_{\Omega} \left[\int_{\Omega} K_\sigma(x-y) |I(y) - f_1(x)|^2 H(\phi(y)) dy \right] dx
\]

\[
+ \lambda_2 \int_{\Omega} \left[\int_{\Omega} K_\sigma(x-y) |I(y) - f_2(x)|^2 (1-H(\phi(y))) dy \right] dx
\]

where \((\lambda_1, \lambda_2)\) are positive fixed parameters. \(K_\sigma\) is a Gaussian kernel with standard deviation \(\sigma\), and \(f_1\) and \(f_2\) are two smooth functions that approximate the local image intensities inside and outside curve \(C\), respectively.

Minimizing the energy functional \(E_{LBF}\) with respect to \(\phi\), the gradient descent flow is defined as follows:

\[
\frac{\partial \phi}{\partial t} = -\delta \phi (\lambda_1 e_1 - \lambda_2 e_2) + \nu \delta' \phi
\]

(7)

Where \(e_1\) and \(e_2\) are defined as:

\[
e_1(x) = \int_{\Omega} K_\sigma(x-y) |I(y) - f_1(x)|^2 dy
\]

\[
e_2(x) = \int_{\Omega} K_\sigma(x-y) |I(y) - f_2(x)|^2 dy
\]

Functions \(f_1\) and \(f_2\) are the local intensity means inside and outside curve \(C\), which are computed in a local region:

\[
f_1(x) = \frac{K_\sigma(x) \ast [H_\sigma(\phi(x))I(x)]}{K_\sigma(x) \ast H_\sigma(\phi(x))}
\]

\[
f_2(x) = \frac{K_\sigma(x) \ast [1 - H_\sigma(\phi(x))]I(x)]}{K_\sigma(x) \ast [1 - H_\sigma(\phi(x))}]
\]

The LBF method could properly segment a homogeneous object from the inhomogeneous background. Since it uses local property, it is easy to be attracted in minima local. So, it strongly dependent on initial contour position [27].

2.3. Local Image Fitted (LIF) Model
The LIF model proposed by Zhang et al. [23] utilizes the local image property to form an energy function, which is written as:

\[
Active contour model for satellite image segmentation using a local and global signed… (Mouri Hayat)
The energy function is based on the difference between the local fitting image and the original image [23]. The local fitting image is defined as follows:

\[LFI_I = m_1 H(\phi) + m_2 (I - H(\phi)) \]

Where \(m_1 \) and \(m_2 \) are expressed as:

\[
\begin{align*}
 m_1 &= \text{mean} \{ I \in (x \in \Omega | \phi(x) > 0) \cap w_k(x) \} \\
 m_2 &= \text{mean} \{ I \in (x \in \Omega | \phi(x) < 0) \cap w_k(x) \}
\end{align*}
\]

Wk is a window function. By minimize the energy functional with respect to level set function \(\phi \), we can obtain:

\[
\frac{\partial \phi}{\partial t} = \delta_e(\phi), (I - I^{LFI})(m_1 - m_2)
\]

where \(\delta_e(\phi) \) is the regularized Dirac (5).

3. PROPOSED METHOD

In order to segment intensity inhomogeneous images, the following energy functional is defined:

\[
E_{LGF1} = E_{LGF1}(\phi) + \mu L_g(\phi) + v A_g(\phi)
\]

\(\mu \geq 0 \) and \(v \geq 0 \) are fixed parameters. \(L_g(\phi) \) and \(A_g(\phi) \) are length and area terms, respectively [7]:

\[
L_g(\phi) = \int_{\Omega} g(I) \delta_e(\phi) |\nabla \phi| dx,
\]

\[
A_g(\phi) = \int_{\Omega} g(I) H_e(-\phi) dx,
\]

The energy function \(A_g(\phi) \) is introduced to speed up the curve evolution. It is the area of the region \(\Omega^\varphi = \{ x, y | \phi(x, y) < 0 \} \). \(A_g(\phi) \) can be viewed as the weighted area of \(\Omega^\varphi \).

In (16), \(g(I) \) is a positive monotonously decreasing edge indicator function ranging in \([0, 1]\):

\[
g(I) = \frac{1}{1 + \sqrt{K_\sigma * I^2}}
\]

ELGF1 is defined according to the following reformulation of (10):

\[
E_{LGF1} = \int_{\Omega} (I(x) - I_{LGF1}(x))(I(x) - I_{GFI}(x)) dx
\]

In (18), let \(ILFI(x) \) be a local fitted image and \(IGFI(x) \) a global fitted image, using a level set \(\phi \), which are defined as:
\[I_{LFI}(x) = f_1 M_1 + f_2 M_2, \]
\[I_{GFI}(x) = c_1 M_1 + c_2 M_2, \]
\[\text{Where } f_1 \text{ and } f_2 \text{ are local intensity means and } c_1 \text{and } c_2 \text{are global intensity means of the given image as defined in (9) and (3), respectively.} \]

\[M_1 = H(\phi) \text{ and } M_2 = (1-H(\phi)), \]
where \(H(\phi) \) is the regularized Heaviside (4).

As follow, we present a hybrid model to deal the intensity inhomogeneity problem firstly and then ensure its convergence in computing time very reduced. ELGF in (18) is minimized with respect to \(\phi \). By using the calculus of variations and steepest gradient descent [26]:

\[
\frac{\partial \phi}{\partial t} = \left((I(x) - I_{LFI}(x))(c_1 - c_2) + (I(x) - I_{GFI}(x))(f_1 - f_2) \right) \delta_x(\phi),
\]

\[\{c_1, c_2\} \text{ and } \{f_1, f_2\} \text{ are global and local intensity means defined in (3) and (9), respectively.} \]

The terms \((I(x) - I_{LFI}(x))(c_1 - c_2)\) and \((I(x) - I_{GFI}(x))(f_1 - f_2)\) in (21) are replaced by local and global signed pressure force (SPF) functions because the above equation is not stable around object boundaries and doesn’t give a good segmentation when the contours of inhomogeneous objects and the background are inseparable. Thus it results an unstable contour. The evolution equation is proposed as follow:

\[
\frac{\partial \phi}{\partial t} = (\lambda_1 L_{SPF}(c_1 - c_2) + \lambda_2 G_{SPF}(f_1 - f_2))
\]

where the proposed local and global SPF functions which normalize the values to [-1,1] are defined as:

\[
L_{SPF} = \begin{cases}
\frac{I(x) - I_{LFI}(x)}{\max \left[I(x) - I_{LFI}(x) \right]}, & I(x) \neq 0 \\
0, & I(x)=0.
\end{cases}
\]

\[
G_{SPF} = \begin{cases}
\frac{I(x) - I_{GFI}(x)}{\max \left[I(x) - I_{GFI}(x) \right]}, & I(x) \neq 0 \\
0, & I(x)=0.
\end{cases}
\]

By using the calculus of variations and steepest gradient descent, the solution of Eq.LGFI from (14) using (15) and (16) is:

\[
\frac{\partial \phi}{\partial t} = (\lambda_1 L_{SPF}(c_1 - c_2) + \lambda_2 G_{SPF}(f_1 - f_2) + \\
\mu \delta_x \left(\frac{\nabla \phi}{| \nabla \phi |} + \nabla \phi \right) \delta_x(\phi)
\]

The two scaling parameters \(\lambda_1 \)and \(\lambda_2 \) in (22) and (25) are used to tune the model for different types of images. The SPF functions defined in (24) and (25) are used to normalize the local and global image differences in the range [-1, 1] inside and outside the region of interest. The new SPF functions proposed in this work are based on both global and local intensity-based fitted images.

Finally, the different steps of the proposed algorithm are as follows:

1. Initialization of the level sets function \(\phi \) to be a binary function as follows:

\[
\phi(x,t = 0) = \begin{cases}
-\rho, & x \in \Omega_0 - \delta \Omega_0 \\
0, & x \in \delta \Omega_0 \\
\rho, & x \in \Omega - \Omega_0
\end{cases}
\]
where \(\rho \) is a positive constant, \(\Omega_0 \) is the inner region of the initial contour, \(\Omega \) is the image domain and \(\partial \Omega_0 \) refers to the initial contour.

2. Compute the edge indicator function \(g(I) \) using (17).
3. Compute the local intensity means, \(f_1, f_2 \), and the global means, \(c_1, c_2 \), using (9) and (3), respectively.
4. Calculate LSPF(I) and GSPF(I) using (23) and (24), respectively.
5. Solve the partial differential equation (PDE) of \(\phi \) using (25).
6. Regularize the level-set function \(\phi \) at time \(t \) by applying a Gaussian kernel \(G_{\chi} \), i.e. \(\phi = G_{\chi} \ast \phi \), where \(\chi \) is the standard deviation of the regularizing Gaussian kernel.
7. Check whether the regularized level-set function is stationary. If not, iterate from step (3).

4. RESULTS AND ANALYSIS

In this section, we apply and compare the proposed model with the different models using both synthetic and real images. All models are implemented using Matlab 7.0 on Windows 7; on 2.3 GHz Intel core i5 PC with 6GB of RAM. Unless otherwise specified, the parameters are described in Table 1.

Figure 1 shows the segmentation results of the related methods and the proposed method on a synthetic image with two objects with blurred boundaries. From the first row, we can observe that all models can satisfactorily segment the two objects. Furthermore, the iterations and CPU time are listed in Table 2.

The second row of Figure 1 demonstrates the segmentation results. As shown, they cannot detect the boundaries of the two objects after the same number of iterations mentioned in Table 2. Figure 2 shows a segmentation result comparison with the related methods of image with intensity inhomogeneity.

Table 1. Description of the Parameters used in the Study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>To initialize the level set function, (\rho > 0) is a constant (LBF: (\rho = 1), LIF: (\rho = 2) and our model : (\rho = 1)).</td>
</tr>
<tr>
<td>(\sigma) or (\chi)</td>
<td>Scale parameter in Gaussian kernel (LBF: (\sigma = 4), LIF: (\sigma = 3), (\chi = 1) and our model: (\sigma = 3), (\chi = 0.5)).</td>
</tr>
<tr>
<td>(\lambda_1 / \lambda_2)</td>
<td>Weighting parameters (C-V, LBF: (\lambda_1 = \lambda_2 = 1) and Our model: (\lambda_1 = 1), (\lambda_2 = 5)).</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Time step (LBF, (\Delta t = 0.1); C-V, LIF and our model: (\Delta t = 1)).</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>The parameter of smoothed Heaviside function (LBF, LIF and our model: (\varepsilon = 1.5)).</td>
</tr>
<tr>
<td>(\nu, \mu)</td>
<td>Area and length terms are regularization parameters of curve (C) (C-V: (\mu = 0.2), (\nu = 0), LBF, (\mu = 0.01) and our model (\mu = 1), (\nu = 0.25)).</td>
</tr>
</tbody>
</table>

![Figure 1](image1.png)

Figure 1. Segmentation results on a synthetic image: (a) initial contour, Segmentation result by: (b) the LIF model, (c) the LBF model, (d) the CV model and (e) the proposed model

Table 2. Iterations and CPU Time Needed by the Methods Compared when Segmenting the Image in Figure 1

<table>
<thead>
<tr>
<th>Methods</th>
<th>Iterations</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The LIF model</td>
<td>40</td>
<td>2.48</td>
</tr>
<tr>
<td>The LBF model</td>
<td>50</td>
<td>3.29</td>
</tr>
<tr>
<td>The CV model</td>
<td>100</td>
<td>4.15</td>
</tr>
<tr>
<td>The proposed model</td>
<td>8</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Active contour model for satellite image segmentation using a local and global signed...

(Mouri Hayat)
Moreover, the LBF and the LIF models fail to distinguish between the intensity between the object and its background and lead to inaccurate segmentation results. But our method results are more satisfactory as it shown by green circle in the first row. So, it can segment more detailed regions than the other methods as shown by the green arrows. These results represent the abilities of the proposed model to deal with intensity inhomogeneity and complex background.

Figure 7 shows some segmentation results by applying the proposed method to different intensity inhomogeneous noisy images. Although noise affected the crispness of edges in the input data, the proposed method is able to yield acceptable segmentation results.
Active contour model for satellite image segmentation using a local and global signed… (Mouri Hayat)

Figure 5. The corresponding JS values yielded by the LBF model, the LIF model and the proposed model on the five images with different intensity inhomogeneity.

Figure 6. Segmentation results on remote sensing images. Row1: input images with red initial contour. Row2: results of the CV model. Row3: results of the LBF model Row4: results of the LIF model. Row5: results of the proposed model.

First row original image added the salt and pepper noise with initial contour, second row final contour. Furthermore, the iterations and CPU time of segmenting the images in Figure 6 are listed in Table 3 for all models studied in this paper. The proposed method yields the lowest time complexity for the examples shown in rows 4 and 5. It takes 23.72 and 29.54 seconds for the examples shown in the last two rows,
respectively. On the other hand, CV and LBF have the lowest time complexity for the example shown in row 2 and 3. In row 2, they take 30.54 and 105.95 seconds respectively while the proposed method take 441.68 seconds to obtain the final contour. Similarly for row 3, they take 27.65 and 52.27 seconds respectively while the proposed method take 96.06 seconds to obtain the final contour. Although CV and LBF have the lowest time complexity for this example, it is unable to properly segment the object as shown in Figure 6. Accordingly, the proposed model is much faster than the other models.

Figure 7. Segmentation results on a different intensity inhomogeneous noisy images

<table>
<thead>
<tr>
<th></th>
<th>Row2</th>
<th>Row3</th>
<th>Row4</th>
<th>Row5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td>Iterations</td>
<td>CPU time(s)</td>
<td>Iterations</td>
<td>CPU time(s)</td>
</tr>
<tr>
<td>CV</td>
<td>800</td>
<td>30.54</td>
<td>900</td>
<td>27.65</td>
</tr>
<tr>
<td>LBF</td>
<td>600</td>
<td>105.95</td>
<td>400</td>
<td>52.27</td>
</tr>
<tr>
<td>LIF</td>
<td>400</td>
<td>520.27</td>
<td>200</td>
<td>315.46</td>
</tr>
<tr>
<td>Our model</td>
<td>400</td>
<td>441.68</td>
<td>100</td>
<td>96.06</td>
</tr>
</tbody>
</table>

Active contour methods behave differently for different types of images. Because the synthetic images shown in Figure 3 have different characteristics compared to Satellite images shown in Figure 6. The parameters used for all experiments in Figure 6 are shown in Table 4. For example, as shown in Table 4, the parameters are fixed at $\lambda_1=5$ and $\lambda_2=1$. So, λ_1 is higher than λ_2 because when the intensity inhomogeneity is severe like the images presented in Figure 6, the accuracy of segmentation relies on the local SPF, in such case, we choose a small λ_2; the local SPF becomes degenerating the global SPF so that the contour is attracted to the object boundary quickly. Similarly for the parameter σ, it is advisable to choose a small σ to segment the small object in further detail (in this case $\sigma=3$). The parameters had to be tuned in order to obtain the best possible segmentation results.

Table 3. Iterations and CPU Time for the Examples Shown in Figure 6

Table 4. Parameters for the Experiments Needed when Segmenting Images in Figure 6

<table>
<thead>
<tr>
<th></th>
<th>λ_1</th>
<th>λ_2</th>
<th>μ</th>
<th>σ_1</th>
<th>σ_2</th>
<th>ρ</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>1</td>
<td>1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LBF</td>
<td>1</td>
<td>1</td>
<td>0.001</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>LIF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Our model</td>
<td>5</td>
<td>1</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

5. CONCLUSION

We have presented a new ACM which is able to use global and local image property for segmenting a range of images with intensity inhomogeneity. The main contribution of this paper is to expand the LIF model which is includes only local image information to a local and global in the variational level set formulation. We have also introduced the SPF function in the gradient descent solution to give more robustness to the final solution and extract multiple objects with several intensities. The tests results have shown that our method performs robustly in severe inhomogeneity and is effective as well as less sensitivity to the initial contour location and less time compared with the related works. In future we aim to extend it to multi-phase segmentation and we hope to reduce the computing time consuming.
REFERENCES

Active contour model for satellite image segmentation using a local and global signed... (Mouri Hayat)