Colored object detection using 5 dof robot arm based adaptive neuro-fuzzy method

Mujiarto¹, Asari Djohar², Mumu Komaro³, Mohamad Afendee Mohamed¹, Darmawan Setia Rahayu⁵, W. S. Mada Sanjaya⁶, Mustafa Mamat⁷, Aceng Sambas⁸, Subiyanto⁹

¹,²Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Indonesia
¹,³Department of Mechanical Engineering, Universitas Pendidikan Indonesia
⁴,⁷Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Malaysia
⁵Department of Physics, Institut Teknologi Bandung, Indonesia
⁶Department of Physics, UIN Sunan Gunung Djati Bandung, Indonesia
⁹Department of Marine Science, Universitas Padjadaran

Article history:
Received Aug 1, 2018
Revised Nov 2, 2018
Accepted Nov 19, 2018

Keywords:
Adaptive Neuro Fuzzy Color Detection
Inference System
Inverse Kinematic Model
Robot Arm

ABSTRACT
In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) based on Arduino microcontroller is applied to the dynamic model of 5 DoF Robot Arm presented. MATLAB is used to detect colored objects based on image processing. Adaptive Neuro Fuzzy Inference System (ANFIS) method is a method for controlling robotic arm based on color detection of camera object and inverse kinematic model of trained data. Finally, the ANFIS algorithm is implemented in the robot arm to select objects and pick up red objects with good accuracy.

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

1. INTRODUCTION
Over the last decade, researchers have attempted to solve problems in engineering with the help of ANFIS such as: ANFIS for tractor starter motor [1], railway wheels [2], external gear pumps [3], motor DC [4], robotic [5], nonlinear three-tank system [6], emissions of a diesel engine [7], automatic parking [8], automatic voltage regulator [9], magnetorheological damper [10], aircraft auto-landing [11], surface roughness in grinding process [12] and welded aluminium pipes [13], power system stabilizer [14], photovoltaic system [15], turbo-generators [16] and dynamic voltage restorer [17].

The robot manipulator control presents a major concern in robotics research at present. In the literature, Mehmet constructed a control of 2-DOF direct-drive robot arm based fractional fuzzy adaptive sliding-mode method [18], Amer et al created 3 DOF planar robot manipulators based adaptive fuzzy sliding mode control [19], Pierrot et al investigated a new design of a 4-DOF parallel manipulator for high-speed and high-acceleration pick and place operations [20], Lotfazar et al explained a dynamic equations of motion of a 5 DoF robot manipulator based integrator backstepping method [21], Alavandar and Nigam described control of 6-DOF robot manipulator using Adaptive Neuro-Fuzzy Inference System [22] and Klanke et al constructed a dynamic path planning for a 7-DOF robot Arm [23]. In the last few years, several new design of robotic manipulator has been proposed [24-26].

Motivated by the above, writers focused on control of the new design 5-DOF robot arm based Adaptive Neuro Fuzzy Inference System (ANFIS). In this study presented color object detection, inverse kinematic model and Adaptive Neuro-Fuzzy (ANFIS) method as machine learning based on MATLAB. Finally, ANFIS method will be implemented to 5 DoF robot arm to pick up and place colored object.

The remainder of this paper is organized as follows: Section 2 presents the general system overview of colored object detection. Section 3 presents the color detection of the object based MATLAB. Section 4 describes schematic and hardware of Robot Arm. The architecture of ANFIS is presented on section 5. Implemented ANFIS method to Robot Arm to take and place the colored object presented on section 6 and section 7 discusses the benefits of the studied adaptive neuro fuzzy method and conclusions are presented.

2. SYSTEM OVERVIEW

Figure 1 describes that the webcam detects a colored object. Next, it is divided into two processes: the first process is to create training data, consisting of the coordinates of centroid colored objects and collecting data of servo angle. The second process is testing the system, after obtaining the coordinates of the centroid colored objects, then the test data of colored objects in accordance with the trained data. Data is processed to obtain a servo angle based on Adaptive Neuro-Fuzzy (ANFIS) method, which is used to drive servo motor of Robot Arm. All processes work in real-time based on MATLAB and Arduino microcontroller.

![Figure 1. General System Scheme of Colored Object Detection](image-url)
3. COLOR DETECTION

Webcam is a device that can be used as a sensor in detecting a colored object through image processing. The algorithm and interfaces build based on MATLAB. Color detection can be done by transforming the image color space. The steps of red color detection using MATLAB are as follows:

1. Enable original video.
2. Extract each frame on the original video.
3. Transform the color space that originally resides in the RGB color space into the HSV color space.
4. Red segmentation of HSV color space based on H (0.8 to 1), S (0.5 to 1) and V (0.1 to 1).
5. Running all frames of the processing sequentially in video form.
6. The selected color object will be marked with a rectangle.

The detection result of the colored object has the centroid coordinate position (x; y) as shown in Figure 2.

![Color Detection with Coordinate](image1)

Figure 2. Interface of Color Detection with Coordinate

4. HARDWARE OF ROBOT ARM

The main component of the 5 DOF robot arm are: Arduino board, webcam, motor servo, battery, cables and Robot Arm hardware construction, as shown in Figure 3. The schematic of 5 DOF robot arm is shown in Figure 4. Robot arm has 5 servos connected to each arduino pin. Servo1 connect to pin 9, Servo 2 connect to pin 10, Servo 3 connect to pin 11, Servo 4 connect to pin 12 and Servo 5 connect to pin 13.

![Robot Arm Hardware](image2)

Figure 3. Hardware of Robot Arm 5 DOF
5. INVERSE KINEMATIC MODEL AND ADAPTIVE NEURO-FUZZY

This work describes the basics of ANFIS network structure and its hybrid learning rule. Motivated by the major idea of fuzzy logic inference procedure on a feed forward network structure, Jang [27] constructed a fuzzy neural network model. The adaptive neuro fuzzy inference system (ANFIS) structure is depicted in Figure 5.

Kinematics studies are conversion from Cartesian coordinates \((x, y, z)\) to the moving angle of the joint \((\theta_1, \theta_2, \theta_3)\) of the mechanical Robot Arm. Kinematic classified to two part are Forward Kinematic (from joint angle to coordinate) and Inverse Kinematic (from coordinate to joint angle) [28].

In this work, the data needed for training of ANFIS is obtained from the inverse kinematics models of the robot arm to take and place a colored object on certain coordinate. The data consist by input data as \(x\) and \(y\) coordinate, and the output data of servo's angle as Servo1-Servo 5 shown at Table 1. Webcam is used to obtain the coordinate data values from the evaluation color object detection. The video capture configure as 640 x 480 pixel. When objects are in certain coordinates, we will get a servo angle capable of moving to reach the object. Furthermore, data will be used as training data in adaptive neuro fuzzy inference system (ANFIS).

Inverse kinematic model data consisting of coordinate data \((x\) and \(y)\) of colored objects, and 5 servos angles with trained data (Cal = Calibration) and tested data (ANFIS = Adaptive Neuro Fuzzy Inference System training) are presented in Table 1. Experiment result using Adaptive Neuro Fuzzy Inference System shows the effectiveness of the approach in control Robot Arm to pick and place the colored object.
Table 1. The database of Inverse Kinematic Model to Control Robot Arm

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>Servo1 Cal</th>
<th>ANFIS</th>
<th>Servo2 Cal</th>
<th>ANFIS</th>
<th>Servo3 Cal</th>
<th>ANFIS</th>
<th>Servo4 Cal</th>
<th>ANFIS</th>
<th>Servo5 Cal</th>
<th>ANFIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>205</td>
<td>113</td>
<td>110.998</td>
<td>174</td>
<td>168.341</td>
<td>50</td>
<td>60.4521</td>
<td>38</td>
<td>44.3076</td>
<td>105</td>
</tr>
<tr>
<td>105</td>
<td>205</td>
<td>113</td>
<td>111.646</td>
<td>174</td>
<td>168.48</td>
<td>50</td>
<td>60.1876</td>
<td>38</td>
<td>44.3137</td>
<td>105</td>
</tr>
<tr>
<td>103</td>
<td>207</td>
<td>113</td>
<td>112.239</td>
<td>174</td>
<td>169.507</td>
<td>50</td>
<td>58.4371</td>
<td>38</td>
<td>44.8238</td>
<td>105</td>
</tr>
<tr>
<td>107</td>
<td>210</td>
<td>113</td>
<td>110.602</td>
<td>174</td>
<td>170.347</td>
<td>50</td>
<td>57.0496</td>
<td>38</td>
<td>45.2488</td>
<td>105</td>
</tr>
<tr>
<td>102</td>
<td>210</td>
<td>113</td>
<td>112.193</td>
<td>174</td>
<td>170.746</td>
<td>50</td>
<td>56.3749</td>
<td>38</td>
<td>45.5633</td>
<td>105</td>
</tr>
</tbody>
</table>

6. IMPLEMENTATION OF COLOR DETECTION

As shown in Figure 6, the robot arm detects a red object with the help of a webcam. Next, the robot picks up the object and moves it in the space provided. Experimental results show that the robot arm is capable of performing its tasks to detect colored objects, retrieve and move objects by control system using ANFIS. When compared with some literature [18-23], the results of this study indicate a better level of accuracy.

![Image of robot arm detecting and moving a red object](image1)

(a) Find colored object
(b) Pick colored object
(c) Place colored object

Figure 6. Experimental result of the arm robot

7. CONCLUSION

In this work, ANFIS has been utilized to obtain the solution of inverse kinematic problem of 5 DOF robot arm. In this approach, inverse kinematics relations of robot are used to obtain the data for training of ANFIS. Image processing has been processed by algorithm based on MATLAB to detection of colored object. Finally, the implementation of red color detection and coordinate to control 5 DoF of Robot Arm based on Arduino microcontroller works effective to take and place the colored object.

Colored object detection using 5 dof robot arm based adaptive neuro-fuzzy method (Mujiaarto)
ACKNOWLEDGEMENT

This project is partially funded by the Research Management, Innovation & Commercialization Center, Universiti Sultan Zainal Abidin.

REFERENCES

Colored object detection using 5 dof robot arm based adaptive neuro-fuzzy method (Mujirto)