Finite Element Method Using PDETOOL of Matlab for Hybrid Stepper Motor Design

E.V.C. Sekhara Rao*, Dr P.V.N.Prasad
CBIT / Asst. Professor, UCE / Professor
Hyderabad, India
e-mail: chandrasekharev@yahoo.co.in*, polaki@rediffmail.com

Abstract

This paper presents eight topologies design of permanent magnet hybrid (PMH) stepper motor for it's magnetic circuit performance analysis using finite element method by PDETOOL of Matlab. The topologies are designed according to the number of stator teeth and length of airgap. This analysis is used to know mmf distribution due to permanent magnet and by excitation coil. This analysis helps to chose best design topology for better mmf distribution.

Keywords: FEM, PDE toolbox, PMH stepper motor

Introduction

Stepper motor is a special motor used for discrete torque without any interface. Many techniques like direct torque control (DTC) may replace applications of induction motor or servomotor with permanent magnet synchronous motor (PMSM) [1] but could not replace stepper motor. It is classified into three major types as permanent magnet stepper motor, Variable reluctance stepper motor and Permanent magnet hybrid (PMH) stepper motor [2]. Among all PMH motor is widely used in many applications such as solar array tracking system in satellites, robotics and CNC machines due to its micro-stepping quality with high torque capacities [3]. But its magnetic circuit analysis is complicated due to the presence of permanent magnet and double slotting which is not discussed in detail in [4]. Its magnetic circuit is explained earlier with equivalent circuit model with linear assumptions in [2], [3].

Airgap variation effect on mmf distribution is explained in [4] using equivalent circuit model without considering exact topology of motor. This method is unable to give detail explanation for different topologies mmf distribution.

But getting operating point mmf with permanent magnet is complicated. Finite element model is used for getting accurate operating point of permanent magnet using tooth layer unit [5]. But mmf distribution was not explained in detail for different topologies.

Fem analysis is carried for mmf distribution with different tooth geometries in [6] but variation of materials and current densities are not discussed in detail and analysis is carried using commercial software.

In this paper the FEM analysis of the PMH stepper motor are done using fundamental concepts of permanent magnet motors [8], [9]. FEM analysis is done using Matlab simulations [7] but PDE toolbox of Matlab is used for design and analysis of PMH stepper motor magnetic circuit first time which is a non-commercial software [10], [11]. PDE toolbox has both command mode and GUI mode. In this paper GUI mode is used to develop the required geometry of the
PMH stepper motor then required boundary conditions are applied then solution is obtained through FEM relations for eight topologies.

Topologies are considered with variation in airgap, stator number of teeth. Two core materials are considered for stator and rotor (Iron (99.8%), Iron (99.95%). Two current densities are considered for analysis (0.5 A, 1 A).

2. Research Method

Tooth layer unit (TLU) [3] is a rectangle area that has a tooth pitch width and two parallel lines behind the teeth of stator and rotor. The area is shown in Figure 1. The factors of the nonlinear material and the non-uniform distribution of magnetic field in the teeth of stator and rotor are taken full consideration in this computation model. There are two basic assumed conditions in the computation model of TLU.

(i) The lines AB and CD of the TLU in Figure 1 are thought as iso-potential lines.
(ii) The magnetic edge effect of stator pole is ignored, which is assumed that the distribution of the magnetic field for every tooth pitch width is the same.

Figure 1 shows stator and rotor tooth geometry for one tooth pitch. In Figure 1, \(u_s \) and \(u_r \) are scalar quantities of the iso-potential lines AB and CD. The magnetic potential difference \(F \) is given by

\[F = U_s - U_r \]

Figure 1. The tooth layer unit

If \(\Phi(\alpha) \) is assumed as the flux in a tooth pitch width and per axial unit length of iron core, \(\alpha \) is the relative position angle of stator and rotor. The specific magnetic conductance \(G \) of TLU is then given by

\[G = \frac{\Phi(\alpha)}{F} \]

Apparentely, \(G \) is related to the saturation extent of iron core and is changed with \(F \) and the relative position angle \(\alpha \). \(G \) can be got by the numerical computation on the magnetic field of TLU shown in Figure 1. The lines AC and BD are the periodic boundary lines because the distribution of the magnetic field is considered as the same for every tooth pitch width. The magnetic field in TLU is irrational field and the magnetic equations [2] for the field are given in the rectangular coordinates by

\[\frac{\partial}{\partial x} \left(\mu \frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \varphi}{\partial y} \right) \]

\[\varphi_{CD} = 0 \]

\[\varphi_{AB} = 0 \]

\[\varphi(x,y)_{AC} = \varphi(x + \lambda, y)_{BD} \]

where \(\varphi \) is the scalar quantity, \(\mu \) is the magnetic permeability and \(\lambda \) is the tooth pitch. For a certain position angle \(\alpha \) and a magnetic potential difference \(F \), the distribution of the magnetic...
field of TLU can be calculated by the 2D finite element analysis. The flux per axial length of TLU is given in (4).

$$\varphi(\alpha, F) = \sum B_e (j m) e$$ \hspace{1cm} (4)$$

Here the nodes j and m are on the border AB as shown in Figure 1. \((j m)\) is the length of unit e from node j to m and \(B_e\) is the flux density. The specific magnetic conductance \(G\) will be used in the calculation of the whole nonlinear network equations of the motor.

Though TLU, the key calculation model of the method is simple in drawing, its calculation model contains some approximate factors due to the basic assumed conditions. It is the main issue to be studied in this paper whether the assumed conditions are of engineering rationality or whether the assumed conditions are in agreement with the practical situations and whether the errors from the assumed conditions can be ignored from the point view of engineering. The two basic assumed conditions (i) and (ii) mentioned are analyzed below. A practical PMH stepper motor was chosen to analyze the rationality. It has 4 poles in the stator and 6 sections in the rotor with disc of NdFeB magnet axially magnetized. The main structure parameters of the motor are shown in Table I.

As the motor is symmetrical, pair of poles of the motor has been chosen as the magnetic numerical calculation area, the magnetic field contains the nonlinear material, iron core, and the current area. The surface arc effect of the iron core and the pole edge effect of the stator are considered in the calculation model, by which the magnetic potential values and their differences on the lines behind the teeth could be found out and the engineering rationality of the assumed conditions could be verified. There is only axial current in Figure 2 and the boundary conditions are provided with set formula as

$$R_1 + R_2 (C_6 + C_5 + C_1) (R_4 + CS_{42}) = R_3 + CS_{42} + C_8$$

where \(R_4\) and \(R_5\) are designed as current coil on pole1 and \(R_6\) is designed as current coil on pole1. \(R_4\), \(R_5\) are designed as current coil on pole 2 and \(CS_{42}\) is designed as current coil on pole2. \(SQ_1, SQ_2, SQ_3,\)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Stator poles & Tooth per stator pole & Outside diameter of stator & Inside diameter of stator & Outside diameter of stator shell \\
\hline
04 & 8 & 10.108cm & 5.936cm & 10.652cm \\
\hline
Tooth number of rotor & Number of turns per phase & Section length of rotor & Outside diameter of rotor & Inside diameter of rotor \\
50 & 21 & 10.26cm & 4.2cm & 1.74cm \\
\hline
\end{tabular}
\caption{Data of PMH stepper motor}
\end{table}

3. Results and Analysis

3.1. Geometry Design

Using graphical user interface (GUI) of PDE toolbox of Matlab [6]-[7], geometry of motor is designed for one pole pitch due to symmetry. Rotor is designed with 23 slots with equal spacing and then stator poles are designed with 05 slots for each pole for the above mentioned dimensions. Current coil is designed on stator pole. The obtained geometry is Figure 2 for uniform airgap and Figure 3 for non uniform airgap. Then stator outer shell is designed and the boundaries are provided with set formula as

$$(((R_1 + (R_2))(C_3 + SQ_1 + SQ_2 + SQ_3 + SQ_7 + SQ_8 + SQ_9 + SQ_10 + SQ_11 + SQ_12 + SQ_13 + SQ_14 + SQ_15 + SQ_16 + SQ_17 + SQ_18 + SQ_19 + SQ_20 + SQ_21 + SQ_22 + SQ_23 + SQ_24 + SQ_25 + SQ_26 + SQ_27 + SQ_28 + SQ_29 + SQ_30)) + (C_2 + SQ_4 + SQ_5 + SQ_6 + SQ_7 + SQ_8 + SQ_9 + SQ_10 + SQ_11 + SQ_12 + SQ_13 + SQ_14 + SQ_15 + SQ_16 + SQ_17 + SQ_18 + SQ_19 + SQ_20 + SQ_21 + SQ_22 + SQ_23 + SQ_24 + SQ_25 + SQ_26 + SQ_27 + SQ_28 + SQ_29 + SQ_30)) + (R_6 + (R_3)) (C_4) + (R_4) + (R_5) + (C_6 + C_5 + C_1) (R_4),$$

where \(R_1, R_2\) are designed for stator pole 1 and \(R_3\) is designed as current coil on pole1. \(R_6, R_5\) are designed for stator pole 2 and \(SQ_42\) is designed as current coil on pole2. \(SQ_1, SQ_2, SQ_3,\)
SQ_7, SQ_8, SQ_9, SQ_25, SQ_26, SQ_27 are designed as teeth on stator poles. SQ_2, SQ_5 - SQ_10 - SQ_11 - SQ_12 - SQ_13 - SQ_14 - SQ_15 - SQ_16 - SQ_17 - SQ_18 - SQ_19 - SQ_21 - SQ_20 - SQ_22 - SQ_23 - SQ_24 - SQ_27 - SQ_38 - SQ_39 - SQ_40 - SQ_41 are created equally to provide 23 rotor teeth. SQ_23 is to provide the required boundary. R6 is the extra teeth on stator for smooth performance of the motor. From the mentioned set formula (8) the geometry is obtained as shown in Figure 2 for uniform airgap with extra teeth on stator and Figure 3 for uniform airgap without extra teeth on stator.

Figure 2. Stator rotor geometry of PMH stepper motor for uniform narrow air-gap (0.137 mm) with extra teeth on stator

Figure 3. Stator rotor geometry of PMH stepper motor for uniform narrow air-gap (0.137 mm) without extra teeth on stator.

Figure 4. Stator rotor geometry of PMH stepper motor for uniform narrow air-gap (0.137 mm) with extra teeth on stator after boundary conditions implemented

Figure 5. Stator rotor geometry of PMH stepper motor for uniform narrow air-gap (0.137 mm) without extra teeth on stator after boundary conditions implemented
3.2. Motor Boundary Conditions

For getting magnetic potential at the border Dirichlet boundary condition is considered as \((1, 0)\) and Neumann condition specified as \((0, 0)\).

Figure 5 and Figure 6 show geometry for one pole pitch for uniform airgap with and without extra teeth on stator respectively after Dirichlet boundary condition is implied on the design shown in Figure 5, Figure 6 respectively.

3.3. PDE Model for Solution

In this investigation two core materials are used for investigation as iron (99.8%) and iron (99.95%). These permeability values are given for stator and rotor core material portion in the geometry shown in Figure 2 and Figure 3. Current density in these portions considered as zero.

Permanent magnet portion permeability is also calculated using (19) and current density is calculated [3]. Two types of permanent magnetic materials are used in this investigation like NdFeB, \(\text{S}_{17}\).

Current density is considered zero and permeability as one for airgap and current coil to investigate permanent magnet operating point. Current density is considered for current coil to investigate total mmf under exciting condition.

![Figure 6. PDE solution for Iron (99.8%) core material with NdFeB permanent magnet with extra teeth on stator without excitation](image1)

![Figure 7. PDE solution for Iron (99.8%) core material with NdFeB permanent magnet with extra teeth on stator with excitation for current density of 17056A/m²](image2)

![Figure 8. PDE solution for Iron (99.8%) core material with NdFeB permanent magnet without extra teeth on stator without excitation](image3)

![Figure 9. PDE solution for Iron (99.8%) core material with NdFeB permanent magnet with extra teeth on stator with excitation for current density of 17056A/m²](image4)
Table 2. MMF due to permanent magnet and excitation coil

<table>
<thead>
<tr>
<th>Topology</th>
<th>Stator</th>
<th>Permanente magnet</th>
<th>Current density (A/m²)</th>
<th>MMF due to PM, AT × 10⁻⁴</th>
<th>MMF due to excitation, AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (99.8)</td>
<td>NdFeB</td>
<td>170648</td>
<td>4.578</td>
<td>341296</td>
<td>4.578</td>
</tr>
<tr>
<td>1</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>4.578</td>
<td>341296</td>
<td>4.578</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>4.578</td>
<td>341296</td>
<td>4.578</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>4.578</td>
<td>341296</td>
<td>4.578</td>
</tr>
<tr>
<td>Iron (99.95)</td>
<td>NdFeB</td>
<td>170648</td>
<td>6.159</td>
<td>341296</td>
<td>6.159</td>
</tr>
<tr>
<td>2</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>6.159</td>
<td>341296</td>
<td>6.159</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>3.079</td>
<td>341296</td>
<td>3.079</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>3.079</td>
<td>341296</td>
<td>3.079</td>
</tr>
<tr>
<td>Iron (99.8)</td>
<td>NdFeB</td>
<td>170648</td>
<td>1.232</td>
<td>341296</td>
<td>1.232</td>
</tr>
<tr>
<td>3</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>1.232</td>
<td>341296</td>
<td>1.232</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>1.231</td>
<td>341296</td>
<td>1.231</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>1.231</td>
<td>341296</td>
<td>1.231</td>
</tr>
<tr>
<td>Iron (99.95)</td>
<td>NdFeB</td>
<td>170648</td>
<td>3.849</td>
<td>341296</td>
<td>3.849</td>
</tr>
<tr>
<td>4</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>3.849</td>
<td>341296</td>
<td>3.849</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>3.849</td>
<td>341296</td>
<td>3.849</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>3.849</td>
<td>341296</td>
<td>3.849</td>
</tr>
<tr>
<td>Iron (99.8)</td>
<td>NdFeB</td>
<td>170648</td>
<td>0.811</td>
<td>341296</td>
<td>0.811</td>
</tr>
<tr>
<td>5</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.811</td>
<td>341296</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>0.811</td>
<td>341296</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.811</td>
<td>341296</td>
<td>0.811</td>
</tr>
<tr>
<td>Iron (99.95)</td>
<td>NdFeB</td>
<td>170648</td>
<td>0.970</td>
<td>341296</td>
<td>0.970</td>
</tr>
<tr>
<td>6</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.970</td>
<td>341296</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>0.970</td>
<td>341296</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.970</td>
<td>341296</td>
<td>0.970</td>
</tr>
<tr>
<td>Iron (99.8)</td>
<td>NdFeB</td>
<td>170648</td>
<td>0.649</td>
<td>341296</td>
<td>0.649</td>
</tr>
<tr>
<td>7</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.649</td>
<td>341296</td>
<td>0.649</td>
</tr>
<tr>
<td></td>
<td>NdFeB</td>
<td>170648</td>
<td>0.649</td>
<td>341296</td>
<td>0.649</td>
</tr>
<tr>
<td></td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.649</td>
<td>341296</td>
<td>0.649</td>
</tr>
<tr>
<td>Iron (99.95)</td>
<td>NdFeB</td>
<td>170648</td>
<td>0.568</td>
<td>341296</td>
<td>0.568</td>
</tr>
<tr>
<td>8</td>
<td>Sm₂Co₁₇</td>
<td>170648</td>
<td>0.568</td>
<td>341296</td>
<td>0.568</td>
</tr>
</tbody>
</table>

Considering all these conditions PDE solution is obtained as shown in Figure 5, Figure 6, Figure 7, and Figure 8. Figure 5 and Figure 7 are magnetic potential diagrams for PMH stepper motor under permanent magnet excitation for with and without extra teeth on stator respectively. Figure 6 and Figure 8 are magnetic potential diagrams for PMH stepper motor.
under permanent magnet and current coil excitations for with and without extra teeth on stator respectively.

PDE toolbox of Matlab for FEM analysis of PMH stepper motor is used to investigate mmf due to permanent magnet for different topologies which is difficult to investigate by mathematical model. Different topologies considered are 1) Uniform air-gap (0.137 mm) with extra teeth on stator 2) Uniform air-gap (0.137 mm) without extra teeth on stator 3) Non-uniform air-gap (0.137 mm) with extra teeth on stator 4) Non-uniform air-gap (0.137 mm) without extra teeth on stator 5) Uniform air-gap (0.93 mm) with extra teeth on stator 6) Uniform air-gap (0.93 mm) without extra teeth on stator 7) Non-uniform air-gap (0.93 mm) with extra teeth on stator 8) Non-uniform air-gap (0.93 mm) without extra teeth on stator. The details of all the eight topologies are shown in Table 2.

4. Conclusion

MMF distribution of pmh stepper motor is found uniform with uniform airgap topologies (topologies 1,2 and 5,6). More mmf interaction between stator and rotor is found for low airgap topologies (0.137 mm).Leakage flux is minimized using extra teeth on stator (topologies 1,5).There is no much difference found in mmf distribution for different permanent magnetic materials (NdFeB, Sm$_2$Co$_{17}$). More mmf interaction observed for Iron (99.95%) core material. Time required for FEM analysis is comparatively low with FEM commercial softwares. This analysis is done without using any commercial FEM software first time for FEM analysis of Stepper motor.

References