Design of Receiver Used for Passive Millimeter Wave Imaging System

Bao-Hua Yang*, Zhi-Ping Li¹, Tong-Fei Yu⁵, Jin Zhang⁶, Xian-Xun Yao⁷, An-Yong Hu¹, Cheng zheng⁶, Jun-Gang Miao⁸

School of Electronic and Information Engineering, Beihang University, 100191, Beijing, China
Corresponding author, e-mail: yangbaohua728@163.com, zhiping_li@buaa.edu.cn¹, 15210809120@163.com⁵, zhangjin850224@139.com⁶, yaoxianxun@126.com⁷, zhengcheng@sina.com⁶, jmiaobremen@126.com⁸

Abstract

As millimeter wave (MMW) electronic technologies have matured, the MMW imaging using for human security inspection is emerging as an effective approach to imaging through obscuring materials, such as clothing for concealed weapons detection or plastic mines. This paper introduces temperature sensitivity firstly and then the fringe-washing functions are derived which decide the structure the antenna array and the receivers of the system BHU-2D. Finally, the fringe-washing functions and their phases are calculated from the frequency responses of 24-receiver, they all show good consistency of the receivers which also can be proved from the test results of receivers. From the final imaging of our system, the 1-2K temperature sensitivity is realized successfully.

Keywords: receiver, aperture synthesis, radiometer, fringe-washing function

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Since the aperture synthesis was introduced into microwave radiometry of the earth, steady progresses have been made for more than 50 years [1]. Many aperture synthesis radiometers in earth remote sensing application have developed such as ESTAR (Electronically Scanned Thinned Array Radiometer) and MIRAS (Microwave Imaging Radiometer with Aperture Synthesis) [2-3]. All of their applications were aimed at remote sensing.

The applications of microwave systems for near-field zone noncontact inspection was very appealing recently, which ranged from civil and industrial engineering to biomedical analysis [3-5]. Since 1990s, many companies have developed several types passive millimeter wave (PMMW) imaging systems whose applications were aimed at human inspection at harbor and airport for example Millivision.co, Sago and QinetiQ [7-8]. Owing to their passive MMW receiver, these systems maybe have fewer harm for human healthy than the tradition X ray system. The Electromagnetics Laboratory of Beihang University also engaged in the research on the aperturesynthesis MMW radiometer. A series of 8mm band instrument with disk antennas has been developed for application of human security apparatus that is BHU-2D [9-12]. The imaging principle of synthetic aperture interferometric radiometer (SAIR) and background cancellation method have been stated by our lab [13].

SAIR confronts decorrelation or so-called fringe-washing effects due to wide field of view requirement. These effects have been considered detailedly in this paper.

2. Instrument Description

The dangerous materials can be checked with the security inspection device based on the brightness temperature difference between them and human bodies by PMMW technology. When the dangerous materials are made of metal, plastic or ceramic, their brightness temperature differences with human bodies, named temperature sensitivity, are about 6-8 k and 1-2k respectively according to their emissivities.
\[\Delta T = \left| T_1 - T_2 \right| = \frac{T_{\text{SYS}}}{\sqrt{\tau}} = \frac{T_A + T_R}{\sqrt{\tau}} \]

\[\approx \Omega \frac{N}{\eta} \frac{T_A + T_R}{\sqrt{\tau}} \frac{\alpha_W}{\alpha_{LO}} \sqrt{\frac{N_v}{\sum}} \left(T_A + T_R \right) \frac{\alpha_W}{\alpha_{LO}} \sqrt{N_v} \]

(1)

Where the parameters \(T_A \), \(T_R \), \(B \) and \(\tau \) is the antenna temperature, the noise temperature, the system bandwidth and the integration time respectively, \(\eta \) is the aperture efficiency of unit antenna, \(\alpha_p \) is the factor of window function, \(\alpha_{LO} \) is the LO factor, \(\alpha_F \) is the filter factor, \(N_v \) is the sampling number of rectangular visibility function, \(\tau_e \) is the equivalent integration time of 1bit/2level digital correlation, the temperature sensitivity of the system is about 1.5 K from the above formula [12]. As can be seen, the item \(B\tau \) is the only variant. From the formula (2) it is the same for the fringe-washing function which means the decorrelation effect of the interferometric aperture synthesis radiometer due to wide field of view requirement.

\[\tilde{r}_{ij} (\tau) = \sin c (B\tau) \]

(2)

So, the fringe-washing function is described by asinc-function in the case, which is only dependent on bandwidth of thereceivers. For comparison, Figures 1 shows this theoretical fringe-washing function for MIRAS receivers (bandwidth 19 MHz), for HUT-2D receivers (bandwidth 7 MHz) [13] and for our receivers of BHU-2D (bandwidth 400MHz).

The maximum delay form the edge of the field of view of BHU-2D is ±0.4ns, as explained in Section 3. For comparison, the maximum delay in the case of MIRAS and HUT-2D is ±12.5 ns and ±6.1 ns respectively. From Figure 2 it can be seen that maximum attenuation caused by the theoretical fringe-washing function at these delays are 0.090 for MIRAS, 0.005 for HUT-2D and 0.21 for BHU-2D.

In practice, the frequency responses of receivers are not rectangular, they have ripple on the passband and finite attenuation on the stopband. They are also non-symmetric causing formula (2) to the complex. So they are not similar from one to another. The fringe-washing function \(r_i (\tau) \) is defined as formula (3) [13-16].

\[\tilde{r}_{ij} (\tau) = \frac{1}{\sqrt{B_i B_j}} \int_{-\infty}^{\infty} H_{n_i}(f + f_0) H_{n_j}^*(f + f_0) e^{i2\pi f \tau} df \]

(3)

Figure 1. Fringe-washing functions of MIRAS, HUT-2D and BHU-2D receivers, assumed having rectangular frequency responses, (b) is zoomed from (a)
Where H_{ij} is the normalized frequency responses of receivers i and j.

The aperture synthesis millimeter wave radiometer is a two-dimensional imaging radiometer having 24 antenna/receiver elements. It consists of a disk antenna array, receivers, a data acquisition subsystem, and a PC. Figure 2 illustrates the antenna array and the receivers of the instrument.

![Antenna Array and Receivers](image)

Figure 2. Illustrates the antenna array and the receivers of the instrument

The complete instrument consists of 24 K_s-band receivers which are arranged in Y-shaped configuration. The receiver distance is 3.07 λ, double-side bandwidth is 400MHz, the center frequency is 34.1GHz and the longest baseline length of the complete is 0.37m. At the edge of field of view (20°), these characteristics led to maximum delay of ±0.4 ns. After the I/Q demodulated, the signal is digitized in 1-bit. All parameters are tabulated in Table 1.

The signals collected by the antennas are fed into a group of dual-conversion receivers with I/Q demodulators. From Figure 2, each receiver consists of a RF front end and an IF module. The down-converters in the RF front end and the IF module is operated in single sideband mode and double sideband mode respectively. The nominal gain and noise temperature of the receivers are 87 dB and 370K respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency</td>
<td>34.1GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>400MHz</td>
</tr>
<tr>
<td>LO Frequency</td>
<td>32GHz (for RF front end)</td>
</tr>
<tr>
<td></td>
<td>2GHz (for I/Q demodulator)</td>
</tr>
<tr>
<td>Field of View</td>
<td>~1K(0.5s Integration time)</td>
</tr>
<tr>
<td>Temperature Sensitivity</td>
<td>~3K(0.05s Integration time)</td>
</tr>
<tr>
<td>Geometry of Antenna Array</td>
<td>Y-shaped</td>
</tr>
<tr>
<td>Number of Receiver Elements</td>
<td>24</td>
</tr>
<tr>
<td>Antenna Element Spacing</td>
<td>27mm(3.07 wavelengths)</td>
</tr>
<tr>
<td>Number of Baselines</td>
<td>427</td>
</tr>
<tr>
<td>Number of Correlators</td>
<td>924</td>
</tr>
<tr>
<td>Number of Cross Correlators</td>
<td>852</td>
</tr>
<tr>
<td>Calibrations</td>
<td>Noise Injection(External point source)</td>
</tr>
<tr>
<td></td>
<td>Background Cancellation</td>
</tr>
</tbody>
</table>

In order to equalize the gain between channels, the gain of the IF module can be adjusted by a variable attenuator. For the purpose of reducing the dimension of the instrument, the receivers are installed parallel to the array. The RF front end and the IF module
are installed in Figure 2 (a) and (b). As is shown in Figure 3, the structure of the system can be seen.

Figure 3. Block diagram of the receiving element.

3. Results of Calculation and Measurement

3.1. Calculation of the Fringe-Washing Function

The fringe-washing function of 24 receivers of BHU-2D are calculated as follows. Frequency responses of 24 BHU-2D receivers were measured using a Vector Network Analyser firstly. Forty eight measured frequency responses (only Q channels are shown for convenience) are shown in Figure 4.

From the measured results it is straightforward to calculate the fringe-washing function according to (3). Forty eight receivers form altogether 564 baselines, whose fringe-washing functions are shown in Figure 5(a) (moduli) and (b) (phase). In order to make their absolute value equals to 1 and their phase equals to 0 at $\tau = 0$, these fringe-washing functions are the ones normalized.

Figure 4. Frequency responses of 24 BHU-2D receivers (Q channels)
From figure 5(a) we can see that the attenuation is approximately 0.1 around 0.4 ns. Its not far away from the estimation of (2), the difference between the minimum and maximum attenuation is almost 0.06. From figure 5(b) we can see that the fringe-washing function phase gets values approximately ±0.5° between ±0.4 ns.

3.2. Measurement Results of Receivers

In order to get good performance of the system, the consistency of 24 I or Q and between I and Q channels is very important. From figure 4, the good consistency of 24 Q channels was get. The consistency between I and Q channels can be get from the figure 6. From figure 5 (a) and (b) show the amplitude error of 24-receiver I/Q channels and its average value, the results vary from -0.54 to +0.69 dB, its most average value is 0.5 dB.

The intermediate receiver structure is double-sideband, so the orthogonal phase difference of I/Q channel output signals in bandwidth has two parts, its bandwidth is 400MHz from -200 to 200 MHz. From figure 7 shows that the orthogonal phase difference of I/Q channel output signals is between -4.5°-9° and their average value vary from 0.34° to 3.75°, it shows the good orthogonal phase of the I/Q channels.

Figure 5. Fringe-washing functions of BHU-2D 24-receiver. (a) Moduli of 1128 fringe-washing functions; (b) Phases of 24 fringe-washing functions

Figure 6. The amplitude consistency of 24-receiver, (a) the amplitude error of the 24-receiver I/Q channels; (b) the average value of I/Q channels.
3.2. Measurement Results of System

To check the instrument performance, we take several scenes that people take different materials such as a bag of oatmeal with a size of 20*17.5cm

From Figure 8 it shows that the conceal weapon and some dangerous materials can be detected by the system such as glue and powder. Their right figures of figure 8 (a), (b) and (c) can be obtained from the subtract of the left two. We see that the brightness temperature difference of 1-2k can be detected successfully and the requirement of temperature sensitivity is realized.

4. Conclusion

The aperture synthesis millimeter wave radiometer used for human security inspection was designed by the Electromagnetics Laboratory of Beihang University. From the results of frequency responses, the fringe-washing function, and final performance, our requirements for the system have been realized which has good performance of the amplitude and orthogonal phase consistency and 1-2 K temperature sensitivity. The next generation of our system is U-shaped SAIR with 48 receivers.
(a) People taking a knife

(b) People taking a bag of oatmeal

(c) People taking a bag of glue

Figure 8. The image of people with different materials, (a) people taking a knife; (b) people taking a bag of oatmeal; (c) people taking a bag of glue.

References

