Routh Approximation: An Approach of Model Order Reduction in SISO and MIMO Systems

D. K. Sambariya* and Omveer Sharma
Department of Electrical Engg., Rajasthan Technical University
Rawatbhata Road, Kota, 324010, India
*Corresponding author, e-mail: dsambariya_2003@yahoo.com

Abstract
In this paper the Routh Approximation method is explored for getting the reduced order model of a higher order model. The reduced order modeling of a large system is necessary to ease the analysis of the system. The approach is examined and compared to single-input single-output (SISO) and multi-input multi-output (MIMO) systems. The response comparison is considered in terms of step response parameters and graphical comparisons. It is reported that the reduced order model using proposed Routh Approximation (RA) method is almost similar in behavior to that of with original systems.

Keywords: Model order reduction (MOR), Single-input single-output (SISO), Multi-input multi-output (MIMO), Routh Approximation method.

1. Introduction
The analysis of high order systems (HOS) is generally very much complicated and costly. On other hand it became easy to analysis of lower order system [1, 2]. The reduced models for the original high order system is achieved by using mathematical optimization procedures or simplification procedures based on physical considerations [3]. Thus, analysis, synthesis and simulation of reduced low order systems is easier and practicable as compared to it’s high order systems [4]. An approach to get reduced order model of a higher order system using time-moments method is presented by [5]. The reduced model have a problem of stability because of mathematical approximation in model reduction technique. The reduced model may be unstable even though the high order system is stable [6].

The instability problem of reduced models was studied by Hutton [7], Shamash [8], Gutman et. al. [9] and Wan [10]. Some method based on stability criterion and other not based on stability criterion but the reduced model for a stable high order system (HOS) is always stable [11, 12]. Different methods give different approach some gives batter result in rise time, some gives batter results in settling time [13]. The combination of these methods gives batter results. The reduced model using combination of methods is nearly with its higher order system. The combination of Routh approximation and particle swarm optimization (PSO) is presented in [14]. The concept of preservation of stability is presented in [15]. The differentiation method for reduction of systems is presented in [16]. The differentiation method is used to derive reduced order model of single machine infinite bus power system in [17]. The application of Routh stability algorithm is presented in [18, 19].

The application of soft computing techniques have been presented in literature in the field of model order reduction [20]. The concept used is minimization of integral squared error using bat algorithm [20]. The application of fire fly algorithm in model order reduction is presented in [21]. The application of particle swarm optimization (PSO) is presented in [22]. The application of Routh approximation with Cuckoo search algorithm for model order reduction is presented in [23]. The hybrid application of stability equation method with self-adaptive bat algorithm to reduce power system to a reduced model is presented in [24].

Received January 1, 2016; Revised April 24, 2016; Accepted May 10, 2016
In this paper the application of Routh approximation method is presented for deriving reduced order model of the higher order LTI systems which includes benchmark problems. The statement of problem is presented in section 2.. The detailed procedural steps on Routh approximation method are included in section 3.. The systems under consideration and their reduced order models are presented in section 4.. The results of original system and reduced models are subjected to step input and compared in this section. Finally the manuscript is concluded in section 5. and followed by references.

2. Problem Formulation

Consider a high order transfer function of a system represented as in Eq. 1.

\[G(s) = \frac{\sum_{i=0}^{n-1} b_is^i}{\sum_{i=0}^{n} a_is^i} \]

where, the \(G(s) \) represents a high order system with the order of \(n \). The purpose of manuscript is to reduce the order of such high order system to \(r \). The reduced order model may be represented as in Eq. 2.

\[R(s) = \frac{\sum_{j=0}^{r-1} d_js^j}{\sum_{j=0}^{r} c_js^j} \]

where, \(a_i, b_i, c_j \) and \(d_j \) are the scalar constants of original high order system and the reduced order system. The objective is to find a reduced \(r^{th} \) order system model \(R(s) \) such that it retains the important properties of \(G(s) \) for the same types of inputs.

3. Review on Routh approximation

This method number of useful properties like if original system is stable then reduce model will be stable, converge monotonically of original system in terms of step and impulse response. By increase order of approximation poles and zeros of the approximants move towards the poles and zeros of the original. In this method Routh Table for original system is use to construct the approximate in a manner that it will stable for stable original system [22].

3.1. Description of Method

By taking reciprocal of Eq. 3 and shown in Eq. 4

\[\hat{G}(s) = \frac{b_n s^{(n-1)} + b_{n-1} s^{(n-2)} + \ldots + b_1}{a_n s^n + a_{n-1} s^{(n-1)} + \ldots + a_0} \]

\[\hat{G}(s) = \frac{1}{s} G \left(\frac{1}{s} \right) = \frac{b_1 s^{(n-1)} + \ldots + b_n}{a_0 s^n + a_1 s^{(n-1)} + \ldots + a_n} \]

If \(s_i \), represents the \(i^{th} \) pole/zeros of the original system then \(1/s_i \), the \(i^{th} \) poles/zeros of the reciprocal system.
3.2. Alpha-Beta expansion

The transfer function of Eq. 4 can be expanded in the canonical form as presented in Eq. 5.

\[
\hat{G}(s) = \left\{ \begin{array}{l}
\beta_1 F_1(s) + \beta_2 F_1(s) F_2(s) + \beta_3 F_1(s) F_2(s) F_3(s) + \ldots \\
+ \beta_n F_1(s) F_2(s) F_3(s) \ldots F_n(s)
\end{array} \right.
\]

\[
= \sum_{i=1}^{n} \beta_i \prod_{j=1}^{n} F_j(s)
\]

The \(F_i(s) \) can be defined by the continued fraction expansions as shown in Eq. 6.

\[
F_i(s) = \frac{1}{\alpha_i s + \frac{1}{\alpha_{i+1} s + \frac{1}{\alpha_{i+2} s + \ldots}}}
\]

In Routh Table 1, the first two rows of table are formed by coefficients of the denominator of function \(\hat{G}(s) \) and taking assumption that the entries of \(a_0^j = a_{j-1}^j = 0 \) for \(j > n \).

\[
a_{i+1}^i = a_i^{i-1} - \alpha_i a_2^i
\]

\[
a_{i+1}^{i+2} = a_i^{i-1} - \alpha_i a_4^i
\]

\[
\vdots
\]

\[
a_{n-1}^{i+1} = a_{n-1}^{i-1} - \alpha_i a_{n-i}^i
\]

where, Eq. 7 stands for \(i = 1, 2, 3, \ldots, n - 1 \). If the value of \(n - i \) as odd, the last term in Eq. 7 is replaced by as shown in Eq. 8.

\[
a_{n-1}^{i+1} = a_{n-1}^{i-1}
\]

For \(i = 1, 2, 3, \ldots, n \), the marginal entries for \(\alpha_i \) are calculated as in Eq. 9.

\[
\alpha_i = \frac{a_{i-1}^i}{a_0^i}
\]

The \(\beta_i \) coefficients of the canonical form Routh table are determined using coefficients of the numerator of \(\hat{G}(s) \) and is shown in Eq. 10.

\[
\beta_i = \frac{b_i}{a_0^i}
\]

\[
b_i^{i+2} = b_i^{i} - \beta_i a_i^j
\]

The Routh Table 1 is equivalent to construction of following finite continued fraction expansion as shown in Eq. 12.

\[
\hat{D}(s) = \frac{\alpha_1}{s} + \frac{1}{\frac{\alpha_2}{s} + \frac{1}{\frac{\alpha_3}{s} + \ldots}}
\]

It could be easy to say that the system with all \(\alpha \) parameters being positive refers to an asymptotically stable system [1].
\[
G_{i,k}(s) = \frac{1}{\alpha_i s + \frac{1}{\alpha_{i+1} s + \cdots}} + \frac{1}{\alpha_{i+2} s + \cdots} + \cdots + \frac{1}{\alpha_{k-1} s + \frac{1}{\alpha_k s}}
\]

The above method possess slight modification for \(i = 1\). The \(I^{st}\) term in the continued fraction expansion is \(1 + \alpha_1 s\) instead of \(\alpha_1 s\). In this way, the \(k^{th}\) convergent may be given by as in Eq. 14 [1, 25].

\[
R_k(s) = \left\{ \beta_1 G_{1,k}(s) + \beta_2 G_{1,k}(s) G_{2,k}(s) + \cdots + \beta_k G_{1,k}(s) G_{2,k}(s) \cdots G_{k,k}(s) \right\}
\]

The \(A_k(s)\) is the denominator of the \(k^{th}\) convergent while \(B_k(s)\) represents the numerator of it. In
this way, the k^{th} convergent may be represented as in following Eq. 15 [26].

$$A_1(s) = \alpha_1 s + 1$$

$$B_1(s) = \beta_1$$

$$A_2(s) = \alpha_1 \alpha_2 s^2 + \alpha_2 s + 1$$

$$B_2(s) = \alpha_2 \beta_1 s + \beta_2$$

$$A_3(s) = \alpha_1 \alpha_2 \alpha_3 s^3 + \alpha_2 \alpha_3 s^2 + (\alpha_1 + \alpha_3) s + 1$$

$$B_3(s) = \alpha_2 \alpha_3 \beta_1 s^2 + \alpha_3 \beta_2 s + (\beta_1 + \beta_3)$$

$$A_k(s) = \alpha_k s A_{k-1}(s) + A_{k-2}(s)$$

$$B_k(s) = \beta_k s B_{k-1}(s) + B_{k-2}(s) + \beta_k$$

$$A_{-1}(s) = 1, \quad B_{-1}(s) = 0$$

$$A_0(s) = 1, \quad B_0(s) = 0$$

The $\hat{R}_k(s)$ represents the approximation of $\hat{G}(s)$ with preserving the frequency behaviour. The k^{th} approximate can be derived by considering the reciprocal of $\hat{R}_k(s)$ as shown in Eq. 16 [25].

$$R_k(s) = \frac{1}{s} \hat{R}_k \left(\frac{1}{s} \right)$$

3.4. Algorithm of Routh approximation

The following steps can be followed for determining the reduced order of a high order system.

(i) Initially determine the reciprocal ($\hat{G}(s)$) of the full order system $G(s)$

(ii) Derive the $\alpha - \beta$ elements

(iii) Determine k^{th} convergent using $\hat{R}_k(s) = \frac{B_k(s)}{A_k(s)}$

(iv) Reciprocate $\hat{R}_k(s)$ for k^{th} order Routh approximation $R_k(s)$.

4. Results and Discussions

4.1. Example-1: SISO

Considering the 8^{th} order system presented in Shamash, 1975 [8] and presented in Eq. 17.

$$G(s) = \frac{18s^7 + 514s^6 + 5982s^5 + 36380s^4 + 122664s^3 + 222088s^2 + 185760s + 40320}{s^8 + 36s^7 + 546s^6 + 4536s^5 + 22449s^4 + 67284s^3 + 118124s^2 + 109584s + 40320}$$

The reduced 2^{nd} order and 3^{rd} order models are presented in Eq. 18 and Eq. 19, respectively using Routh Approximation method.

$$R_2(s) = \frac{1.990s + 0.432}{s^2 + 1.174s + 0.432}$$

$$R_3(s) = \frac{4.968s^2 + 4.331s + 0.940}{s^3 + 2.545s^2 + 2.555s + 0.940}$$

The step response comparison of the original system [8] and it’s reduced 2^{nd} and 3^{rd} order models are graphically compared in Fig. 1. It can be observed that the stability of the system that of with reduced models are retained except slight variation in rise time, settling time, peak value and peak time as included in Table 3. Since, the important properties of the higher order system are preserved in it’s reduced (2^{nd} order) system, consequently the mathematical ease is increased greatly.
Table 3. Step response comparision of original system in Example-1, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>Rise Time</th>
<th>Settling Time</th>
<th>Peak Value</th>
<th>Peak Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original: $G_8(s)$ [8]</td>
<td>0.0569</td>
<td>4.8201</td>
<td>2.2035</td>
<td>0.4493</td>
</tr>
<tr>
<td>MOR-RA: $R_2(s)$</td>
<td>0.5514</td>
<td>8.7327</td>
<td>1.5717</td>
<td>2.3235</td>
</tr>
<tr>
<td>MOR-RA: $R_3(s)$</td>
<td>0.1973</td>
<td>7.0765</td>
<td>2.1128</td>
<td>1.1637</td>
</tr>
</tbody>
</table>

4.2. Example-2: SISO
Considering the 4th order system presented in Hwang, 1996 [27] and presented in Eq. 20.

$$G(s) = \frac{10s^4 + 82s^3 + 264s^2 + 396s + 156}{2s^5 + 21s^4 + 84s^3 + 173s^2 + 148s + 40}$$

(20)

The reduced 2nd order and 3rd order models are presented in Eq. 21 and Eq. 22, respectively using Routh Approximation method.

$$R_2(s) = \frac{1.990s + 0.432}{s^2 + 1.174s + 0.432}$$

(21)

$$R_3(s) = \frac{4.968s^2 + 4.331s + 0.940}{s^2 + 2.545s^2 + 2.555s + 0.940}$$

(22)

The step response comparison of the original system [27] and its reduced 2nd and 3rd order models are graphically compared in Fig. 2. It can be observed that the stability of the system that of with reduced models are retained except slight variation in rise time, settling time, peak value and peak time as included in Table 4. In this case the rise-time of the original, 2nd and 3rd order reduced models are 2.7456, 2.6830 and 2.5549 seconds, respectively. The difference in the rise times is minimal and is enough to prove similarity of the original and reduced models. The other step response data are enlisted in Table 4.

4.3. Example-3: SISO
Considering the 7th order system presented in Jamshidi, 1983 [28] and presented in state-space form by Eq. 23 - 24 and in transfer function by Eq. 25. It represents the SMIB power
Figure 2. Step response of the original 4th order system [27] and its reduced model \(R_2(s) \) (Eq. 21) and \(R_3(s) \) (Eq. 22) using the Routh approximation method.

Table 4. Step response comparison of original system in Example-2, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>Rise Time</th>
<th>Settling Time</th>
<th>Peak Value</th>
<th>Peak Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original: (G(s)) [27]</td>
<td>2.7456</td>
<td>5.4346</td>
<td>3.8944</td>
<td>10.4392</td>
</tr>
<tr>
<td>MOR-RA: (R_2(s))</td>
<td>2.6830</td>
<td>3.9639</td>
<td>3.9748</td>
<td>6.4974</td>
</tr>
<tr>
<td>MOR-RA: (R_3(s))</td>
<td>2.5549</td>
<td>5.5932</td>
<td>3.8992</td>
<td>15.6589</td>
</tr>
</tbody>
</table>

The reduced 2nd order and 3rd order models are presented in Eq. 26 and Eq. 27, respectively using Routh Approximation method.

\[
\dot{x}(t) = \begin{bmatrix} -0.58 & 0 & 0 & -0.269 & 0 & 0.2 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -5 & 2.12 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 377 & 0 & 0 \\ -0.141 & 0 & 0.141 & -0.2 & -0.28 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.0838 & 2 \\ -173 & 66.7 & -116 & 40.9 & 0 & -66.7 & -16.7 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \end{bmatrix} u(t) \quad (23)
\]

\[
y(t) = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} x(t) \quad (24)
\]

\[
G(s) = \frac{2s^6 + 420.4s^5 + 9435s^4 + 1.39 \times 10^5s^3 + 4.663 \times 10^5s^2 + 4.342 \times 10^5 + 1.877 \times 10^5}{s^8 + 23.48s^7 + 331.7s^6 + 2640s^5 + 1.757 \times 10^4s^4 + 5.165 \times 10^4s^3 + 3.534 \times 10^4s^2 + 1.729 \times 10^4} \quad (25)
\]

The reduced 2nd order and 3rd order models are presented in Eq. 26 and Eq. 27, respectively using Routh Approximation method.

\[
R_2(s) = \frac{10.085s + 4.360}{s^2 + 0.821s + 0.402} \quad (26)
\]
Table 5. Step response comparison of original system in Example-3, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>Rise Time</th>
<th>Settling Time</th>
<th>Peak Value</th>
<th>Peak Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original: $G(s)$ [28, 29]</td>
<td>0.1126</td>
<td>5.9294</td>
<td>16.0310</td>
<td>0.4307</td>
</tr>
<tr>
<td>MOR-RA: $R_2(s)$</td>
<td>1.1998</td>
<td>7.4456</td>
<td>13.9203</td>
<td>3.3225</td>
</tr>
<tr>
<td>MOR-RA: $R_3(s)$</td>
<td>0.5740</td>
<td>9.0915</td>
<td>13.2269</td>
<td>2.1099</td>
</tr>
</tbody>
</table>

$$R_3(s) = \frac{29.318s^2 + 27.948s + 12.081}{s^3 + 3.26s^2 + 2.275s + 1.113}$$

Figure 3. Step response of the original 7^{th} order system [28, 29] and its reduced model $R_2(s)$ (Eq. 26) and $R_3(s)$ (Eq. 27) using the Routh approximation method

In this example, the considered system is from the power system engineering. The original system and its reduced 2^{nd} and 3^{rd} order models are subjected to step signal and superimposed to compare the responses in Fig. 3. It can be seen that the response due to original system is having more oscillations as compared to that of with the reduced order models. The step response information of these responses are enlisted in Table 5.

4.4. Example-4: SISO

Considering the 9^{th} order boiler system represented in transfer function form in Eq. 28 as presented in [26, 30]. The reduced 2^{nd} order and 3^{rd} order models are presented in Eq. 29 and

$$G(s) = \frac{146.4s^8 + 9.81 \times 10^4s^7 + 5.999 \times 10^7s^6 + 3.206 \times 10^{10}s^5 + 3.582 \times 10^{12}s^4 + 1.113 \times 10^{14}s^3 + 1.154 \times 10^{15}s^2 + 3.971 \times 10^{17}s + 3.063 \times 10^{19}}{s^9 + 659.8s^8 + 4.136 \times 10^5s^7 + 2.13 \times 10^8s^6 + 2.422 \times 10^{10}s^5 + 8.737 \times 10^{12}s^4 + 1.523 \times 10^{14}s^3 + 1.221 \times 10^{15}s^2 + 3.636 \times 10^{17}s + 2.406 \times 10^{19}} \quad (28)$$
Table 6. Step response comparison of original system in Example-4, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>Rise Time</th>
<th>Settling Time</th>
<th>Peak Value</th>
<th>Peak Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original: $G_9(s)$ [26, 30]</td>
<td>0.5432</td>
<td>2.2753</td>
<td>12.6986</td>
<td>4.5555</td>
</tr>
<tr>
<td>MOR-RA: $R_2(s)$</td>
<td>0.6375</td>
<td>2.9668</td>
<td>13.2809</td>
<td>1.6504</td>
</tr>
<tr>
<td>MOR-RA: $R_3(s)$</td>
<td>0.2577</td>
<td>2.4749</td>
<td>12.6920</td>
<td>4.5431</td>
</tr>
</tbody>
</table>

Eq. 30, respectively using Routh Approximation method.

$$R_2(s) = \frac{35.448s + 27.343}{s^2 + 3.246s + 2.148} \quad (29)$$

$$R_3(s) = \frac{90.835s^2 + 319.054s + 246.1}{s^3 + 9.662s^2 + 29.214s + 19.331} \quad (30)$$

The considered 9^{th} order system is a practical boiler system as presented in [26, 30]. The system is reduced to 2^{nd} and 3^{rd} order models using Routh approximation method. The original and reduced models are subjected to step input and the graphical comparison is presented in Fig. 4. It can be seen that the original and main properties of the original higher order system are retained in its reduced model responses with comparatively reduced overshoots. The step response information are included in Table 6.

4.5. Example-5: MIMO

A power plant system can be classified as a multivariable large-scale system. Numerous methods of analysis and synthesis for such processes have been developed, but the remarkable dimensions of the model structure makes their implementation very difficult. Considerable attention has therefore been devoted to the problem of deriving reduced-order models for such systems. The size and complexity of current electric power networks involves methods for studying approximated models to investigate the dynamic behaviour of such system types in a more suitable way; the methods currently used for determining reduced-order dynamic models for power systems in multi-bus, multi-machine frames are generally referred to as "dynamic equivalents".
An electric power system consisting of a salient-pole synchronous generator connected to an infinite bus-bar is considered. Taking into account the well known performance equations of both the machine and the transmission line, a very accurate non-linear mathematical model in the state-space form has been derived. As state variables of the electrical part of the synchronous machine, the set of winding currents of the \(q - d \) equivalent circuit has been chosen. The seventh-order state vector of the original system consists of the stator currents \(i_d, i_q \), the field circuit current \(i_{fd} \), two damping circuit currents \(i_{kd}, i_{qd} \) and the mechanical quantities \(\delta \) and \(\omega \). The input vector, in the chosen representation, consists of two quantities, the mechanical torque \(T_m \) and the voltage \(V_f \). As output variables, the machine voltage \(V_I \) and the mechanical state variables \(\delta \) and \(\omega \) have been chosen [3].

By considering small variations (\(\Delta \)) around a steady-state operating point, a linear model has been derived. The values of the parameters, steady-state working conditions and further details on the adopted model are reported by Ramamoorty and Arumugan [31].

we indicate with:

- Change in mechanical torque (\(\Delta T_m \)) as input 1
- Change in field voltage (\(\Delta V_f \)) as input 2
- Change in terminal voltage (\(\Delta V_t \)) as output 1
- Change in power angle (\(\Delta \delta \)) as output 2
- Change in speed (\(\Delta \omega \)) as output 3

The transfer function of multi-input multi-output (MIMO) single-machine infinite-bus (SMIB) power system can be represented as in Eqn. 31. The transfer function of the system with output \(\Delta V_t \) to input \(\Delta T_m \) can be represented by \(G_{11}(s) = g_{11}(s)/d(s) \) and similarly for others. The considered MIMO SMIB consists of six different transfer function with different sets of input and output signals. The denominator of these systems is common and represented by \(d(s) \) in Eqn. 32. The polynomials presented in Eqn. 33 - Eqn. 38, are the numerators of different transfer functions due to different sets of input and output signals.

\[
G(s) = \frac{\begin{bmatrix} g_{11}(s) & g_{21}(s) \\ g_{12}(s) & g_{22}(s) \\ g_{13}(s) & g_{23}(s) \end{bmatrix}}{d(s)}
\]

\[
d(s) = \begin{cases}
 s^7 + 258.7s^6 + 4.31 \times 10^5s^5 \\
 +4.835 \times 10^7s^4 + 1.853 \times 10^9s^3 \\
 +2.54 \times 10^{10}s^2 + 5.973 \times 10^{10}s \\
 +1.886 \times 10^{11}
\end{cases}
\]

\[
g_{11}(s) = \begin{cases}
 -12.41s^4 + 1.213 \times 10^4s^3 \\
 -2.866 \times 10^5s^2 - 3.325 \times 10^8s \\
 -6.404 \times 10^9
\end{cases}
\]

\[
g_{12}(s) = \begin{cases}
 -12.41s^5 + 1.213 \times 10^4s^4 \\
 -2.866 \times 10^6s^3 - 3.325 \times 10^9s^2 \\
 -6.404 \times 10^9s + 0.0006087
\end{cases}
\]

\[
g_{13}(s) = \begin{cases}
 0.2005s^6 + 47.88s^5 \\
 +3.928 \times 10^4s^4 + 5.122 \times 10^6s^3 \\
 +2.288 \times 10^8s^2 + 3.434 \times 10^9s \\
 +5.492 \times 10^9
\end{cases}
\]
Table 7. Step response comparison of original system in Example-4, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Original System</th>
<th>ROMs</th>
<th>Transfer functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_{11}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{-0.0134s-0.2581}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{0.0053s^2-0.1914s-3.687}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
<tr>
<td>$G_{12}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{-0.2581s}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{-0.1914s^2-3.687s}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
<tr>
<td>$G_{13}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{0.1384s+0.2213}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{0.1206s^2+1.977s+3.162}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
<tr>
<td>$G_{21}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{0.8918s+0.8519}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{0.7601s^2+12.74s+12.17}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
<tr>
<td>$G_{22}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{0.8519s}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{12.74s^2+12.17s}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
<tr>
<td>$G_{23}(s)$</td>
<td>$R_2(s)$</td>
<td>$\frac{-0.0269s-0.3653}{s^2+2.407s+0.76}$</td>
</tr>
<tr>
<td></td>
<td>$R_3(s)$</td>
<td>$\frac{0.0006s^2-0.3842s-5.219}{s^3+14.6s^2+34.39s+10.86}$</td>
</tr>
</tbody>
</table>

$$g_{21}(s) = \begin{cases} 52.08s^5 + 1.076 \times 10^4 s^4 \\ +2.187 \times 10^7 s^3 + 1.377 \times 10^9 s^2 \\ +2.213 \times 10^{10}s + 2.114 \times 10^{10} \end{cases} \quad (36)$$

$$g_{22}(s) = \begin{cases} 52.08s^6 + 1.076 \times 10^4 s^5 \\ +2.187 \times 10^7 s^4 + 1.377 \times 10^9 s^3 \\ +2.213 \times 10^{10}s^2 + 2.114 \times 10^{10}s \\ +0.0009095 \end{cases} \quad (37)$$

$$g_{23}(s) = \begin{cases} 7.448s^5 + 2.701 \times 10^4 s^4 \\ +8.685 \times 10^5 s^3 - 1.664 \times 10^7 s^2 \\ -6.673 \times 10^8 s - 9.065 \times 10^9 \end{cases} \quad (38)$$

In this section a practical power system with multi-input and multi-output is considered. The system concerned is SMIB power system model with 2-inputs and 3-outputs. The system appeared as of 7th order and represented by 6 different transfer functions. Each transfer function is reduced to it’s 2nd and 3rd order models. The reduced models of the original systems are enlisted in Table 7. The respective original system and it’s reduced models are subjected to step response and compared in Fig. 5 - Fig. 10. The step response information in terms of rise-time, settling-time, peak and peak-time are summarized in Table 8.

5. Conclusion

In this paper, the application of Routh Approximation is explored to obtain reduced order of SISO and MIMO systems in literature. The four examples of LTI SISO of practical importance and one on MIMO a power system example is considered to get 2nd and 3rd order reduced model. The similarity in original and reduced models are examined using step response graphical and statistical comparisons. It have been found that the reduced order models are able to retain stability of the considered system and reflects impressive degree of similarity in terms of rise time, settling time peak value and peak time. It could be easy to state that the characteristics of the reduced order models closer to original system are having more similarity as compared to
Table 8. Step response comparison of original system in Example-5, with reduced models using Routh Approximation

<table>
<thead>
<tr>
<th>Systems and ROMs</th>
<th>Rise time (s)</th>
<th>Settling time (s)</th>
<th>Peak</th>
<th>Peak time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_{11}(s)$</td>
<td>6.0012</td>
<td>10.9472</td>
<td>0.3393</td>
<td>19.8313</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>6.0503</td>
<td>10.9570</td>
<td>0.3394</td>
<td>20.9108</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>6.0014</td>
<td>10.9474</td>
<td>0.3393</td>
<td>19.7016</td>
</tr>
<tr>
<td>$G_{12}(s)$</td>
<td>-</td>
<td>11.8495</td>
<td>0.0905</td>
<td>0.9330</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>0</td>
<td>12.0300</td>
<td>0.0867</td>
<td>1.0320</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>0</td>
<td>11.8547</td>
<td>0.0904</td>
<td>0.9333</td>
</tr>
<tr>
<td>$G_{13}(s)$</td>
<td>5.7667</td>
<td>10.3078</td>
<td>0.2911</td>
<td>22.3338</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>5.7608</td>
<td>10.2977</td>
<td>0.2911</td>
<td>22.3142</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>5.7665</td>
<td>10.3078</td>
<td>0.2911</td>
<td>22.3338</td>
</tr>
<tr>
<td>$G_{21}(s)$</td>
<td>5.2590</td>
<td>9.7107</td>
<td>1.1207</td>
<td>22.0030</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>5.2369</td>
<td>9.6813</td>
<td>1.1190</td>
<td>16.2674</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>5.2599</td>
<td>9.7105</td>
<td>1.1189</td>
<td>16.1383</td>
</tr>
<tr>
<td>$G_{22}(s)$</td>
<td>3.0254E-15</td>
<td>7.6495</td>
<td>0.9039</td>
<td>0.0709</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>0</td>
<td>12.0300</td>
<td>0.2861</td>
<td>1.0320</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>0</td>
<td>8.0417</td>
<td>0.7695</td>
<td>0.1919</td>
</tr>
<tr>
<td>$G_{23}(s)$</td>
<td>6.0018</td>
<td>10.9253</td>
<td>0.4805</td>
<td>21.9535</td>
</tr>
<tr>
<td>$R_{2}(s)$</td>
<td>6.0483</td>
<td>10.9348</td>
<td>0.4804</td>
<td>20.9108</td>
</tr>
<tr>
<td>$R_{3}(s)$</td>
<td>6.0015</td>
<td>10.9258</td>
<td>0.4804</td>
<td>20.5690</td>
</tr>
</tbody>
</table>

lower order. It means the 3^{rd} reduced model is more similar to original system as compared to 2^{nd} order reduced model.

References

Figure 5. Response of the $G_{11}(s)$ and its $R_2(s)$ and $R_3(s)$

Figure 6. Response of the $G_{12}(s)$ and its $R_2(s)$ and $R_3(s)$

Figure 7. Response of the $G_{13}(s)$ and its $R_2(s)$ and $R_3(s)$

Figure 8. Response of the $G_{21}(s)$ and its $R_2(s)$ and $R_3(s)$
Figure 9. Response of the $G_{22}(s)$ and its $R_2(s)$ and $R_3(s)$

Figure 10. Response of the $G_{23}(s)$ and its $R_2(s)$ and $R_3(s)$

