Slots and Notches Loaded Microstrip Patch Antenna for Wireless Communication

Ashish Singh*, Kamakshi, Mohd. Aneesh, J.A. Ansari
Department of Electronics and Communication, University of Allahabad, Allahabad, India
*Corresponding author, e-mail: ashsin09@rediffmail.com

Abstract
In this article, the theoretical investigations are carried out on slots and notches loaded microstrip patch antenna for dual-band operations. The antenna parameters are calculated such as return loss, VSWR and radiation pattern. It is observed that antenna resonates at three distinct modes of frequencies of 1.490/1.953/2.941 GHz. The characteristics behaviors of the proposed antenna are compared with other coaxial fed microstrip patch antennas. The bandwidth of the proposed antenna at modes TM01 is 2.01 %(simulated) and 3.42 % (theoretical), TM02 is 1.10 %(simulated) and 3.81 % (theoretical) and TM03 is 1.01 %(simulated) and 4.80 % (theoretical). The theoretical results are compared with IE3D simulation results as well as reported experimental results and they are in close agreement.

Keywords: dual-band, slots, notches, rectangular microstrip patch antenna

1. Introduction
In the recent development of microstrip patch antenna in wireless communication. These antennas are used in wider range of devices in various applications such as mobile satellite, terrestrial cellular, personnel communication system [1-3] etc. As these antennas plays vital role in efficient reception and transmission of the signal in wireless communication. These antennas become more fruitful when single antenna can be used for both transmission and reception of the signal as well as can be used for dual band operation having more than two bands of frequencies. This motivated the researcher to design microstrip patch antenna for dual band operation having multiband of frequencies.

Dual band microstrip patch antenna was first reported by Wang and Lo [4] in 1984. Thereafter, plenty of dual band microstrip antennas have been reported [5-17] in which maximum research papers reported are experimental and simulated results. Only few researchers provide theoretical analysis based on circuit theory concept of their radiating structures. The theoretical analysis based on circuit theory concept us helps to comprehend on which parameter the characteristics behavior of antenna depends on such as length, width, height of the substrate, dielectric substrate, length and width of notch and slot etc. There are some researchers that have reported on dual band microstrip patch antenna having triple-band such as microstrip patch antenna using a spur-line filter [18], multi-frequency and broadband hybrid coupled [19], GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals [20], broadband triple-frequency microstrip patch radiator combining [21], a folded planar inverted-f antenna for GSM/DCS/Bluetooth triple-band application [22], internal triple-band folded planar antenna design for third generation mobile handsets [23], design and operation of dual/triple-band asymmetric m-shaped microstrip patch antennas [24], dual-band miniaturized patch antennas for microwave breast imaging [25], the use of u-slots in the design of dual-and triple-band patch antennas [26], compact UWB printed slot antenna with extra Bluetooth, GSM and GPS bands [27], stacked-patch dual-polarized antenna for triple-band handheld terminals [28] etc. All these above reported paper of triple band having dual band operation has only experimental and simulated results. They have not explained their theoretical behavior of the antenna based on circuit theory concept as well as not provided the comparison with theoretical, experimental and simulated results.

In this article, theoretical analysis of microstrip patch antenna with three slots and notches for dual band /triple band operation is presented. The theoretical analysis of dual band antenna for triple band frequency operation is not reported in past. The theoretical comparison
of proposed antenna with similar radiating structures as well as the theoretical, experimental and simulated comparison of results for proposed antenna has been presented. Detail description of antenna and their theoretical analysis has been presented in next section.

2. Antenna Design

The proposed antenna structure is shown in Figure 1. It consists of rectangular patch of dimension (L×W) with three slots S₁, S₂ and S₃ of dimensions Lₛ₁×Wₛ, Lₛ₁×Wₛ and Lₛ₁×Wₛ respectively as well as, four notches of equal dimension (Nₙ×Nₙ) is loaded on both side of the radiating edges. The rectangular patch is fed via coaxial feeding at (X₀,Y₀) and it is separated from ground plane with substrate (εᵣ=2.65) of thickness H. Detail design specification of antenna is given in Table 1.

![Figure 1. Geometry of rectangular microstrip patch antenna (a) top view, (b) side view](image)

![Figure 2. Current distribution of proposed antenna at (a) TM₀₁, (b) TM₀₂, and (c) TM₀₃ modes](image)

<table>
<thead>
<tr>
<th>Table 1. Design Specification of proposed antenna structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Length of the patch (L)</td>
</tr>
<tr>
<td>Width of the patch(W)</td>
</tr>
<tr>
<td>Dielectric substrate εᵣ</td>
</tr>
<tr>
<td>Length of the slots S₁ and S₃ (Lₛ₁×Lₛ₁×Lₛ₁)</td>
</tr>
<tr>
<td>Length of the slot S₂ (Lₛ₂)</td>
</tr>
<tr>
<td>Width of the slots(Wₛ)</td>
</tr>
<tr>
<td>Width of the notches(Nₙ)</td>
</tr>
<tr>
<td>Length of Notches(Nₙ)</td>
</tr>
<tr>
<td>Distance between slots (S₁ & S₃) and notches (Wₛ)</td>
</tr>
<tr>
<td>Distance between slot (S₂) and notches (Wₛ)</td>
</tr>
<tr>
<td>Distance between two notches (Wₛ)</td>
</tr>
<tr>
<td>Distance between non radiating edges of patch and slot (S₁ & S₃) (Wₛ)</td>
</tr>
<tr>
<td>Feeding point(X₀, Y₀)</td>
</tr>
</tbody>
</table>
3. Theoretical Analysis

According to the Modal expansion cavity modal the rectangular patch is considered as parallel combination of resistance R_p, capacitance C_p and inductance L_p as shown in Figure 3. The values of R_p, L_p, and C_p are given as [29],

$$C_p = \frac{\varepsilon_0 \varepsilon_r LW}{2H} \cos^{-2} \left(\frac{Y_0 \pi}{L} \right)$$ (1)

$$L_p = \frac{1}{\omega^2 C_p}$$ (2)

$$R_p = \frac{Q_p}{\omega C_p}$$ (3)

$$Q_p = \frac{c\sqrt{\varepsilon_r}}{4\beta H}$$ (4)

And,

$$f = \frac{c}{2 \pi L \sqrt{\varepsilon_r}}$$ (5)

f is the design frequency of rectangular patch,
L is the length of the patch,
W is the width of the patch,
H is height of the substrate,
Y_0 is the feeding point on y axis,
ε_r is the relative permittivity of the substrate,
c is the velocity of light,
ε_e is the effective permittivity of the medium [29]

The total input impedance Z_p of rectangular patch is given as:

$$Z_p = \frac{1}{R_p + j\omega C_p + \frac{1}{j\omega L_p}}$$ (6)

![Figure 3. Equivalent circuit of simple rectangular patch](image)

Three parallel slots loaded on the patch is considered as parallel combination of impedance Z_{S1}, Z_{S2} and Z_{S3} as shown in Figure 4. The input impedance Z_S of the slots is calculated as [30-33],

$$Z_S = R_S + jX_S,$$

$$R_S = 60[C + \ln(kL_0)] + \frac{1}{2} \sin(kL_0) \ln(kL_0) - 2 \sin(kL_0) + \frac{1}{2} \cos(kL_0) \{C - \ln(kL_0) - \frac{1}{2} - C(2kL_0) - 2C(kL_0)\} \cos \psi$$ (7)
Here C is the Euler’s constant, ψ is the inclination of the slot from radiating edge, k is the propagation constant and function $S_i(x)$ and $C_i(x)$ are defined as:

\[
S_i(x) = \int_0^x \frac{x \sin(x)}{x} \, dx
\]

\[
C_i(x) = \int_0^x \frac{x \cos(x)}{x} \, dx
\]

Where W_S is width of slots and L_S is the Length of the slots.

Now, input impedance of corresponding slots Z_{S1}, Z_{S2} and Z_{S3} can be calculated from above Equation (7) and (8) by putting the value of length and width of their corresponding slot. The total input impedance of slots on the patch is given as:

\[
Z_S = \frac{1}{\frac{1}{Z_{S1}} + \frac{1}{Z_{S2}} + \frac{1}{Z_{S3}}}
\]

When a four notches is loaded to the patch on both side of the radiating edges of the antenna. Due to the effect of notches and slots, three current flows on the patch of different length, one current flows normal to the patch and resonates at the design frequency of the initial patch, and other two current flows around the notches and slots as shown in Figure 2. Figure 2 (a-c) shows the current distribution at three distinct resonance frequencies are 1. 490GHz, 1.953GHz and 2.941GHz respectively. Therefore, this perturbation modifies the equivalent circuit of the initial patch with an additional series inductance ΔL and series capacitance ΔC [34] as shown in Figure 5.

\[
\Delta L = 8 \left(\frac{H \eta \pi}{8} \left(\frac{N_L}{N_w} \right) \right)
\]

\[
\Delta C = 8 \left(\frac{N_L}{N_w} \right) C_e
\]
Where \(\mu = 4\pi \times 10^{-7} \text{ H/m} \), \(C_g \) is the gap capacitance [35].

\[
C_g = 0.5H.Q_e \exp(-1.86\frac{N_w}{H}) \left[1 + 4.09\{1 - \exp(0.75\sqrt{\frac{H}{W}})\} \right]
\]

\[
Q_1 = 0.04598 \left[0.03 + \left(\frac{W}{H} \right)^{0.4} \right] (0.272 + \varepsilon, 0.07).
\]

\[
Q_2 = 0.107 \left[\frac{W}{H} + 9 \right] \left(\frac{N_w}{H} \right)^{1.23} + 2.09 \left(\frac{N_w}{H} \right)^{0.85} + \left[\frac{1.5 + 0.3\left(\frac{W}{H} \right)}{1 + 0.6\left(\frac{W}{H} \right)} \right]
\]

\[
Q_3 = \exp(-0.5978) - 0.55
\]

\[
Q_4 = 1.23
\]

Where \(N_w \) is the width of the notches and \(N_L \) is the length of the notches.

The impedance of notch loaded on the as shown in Figure 5 is given as:

\[
Z_n = \frac{1}{R_2 + j\omega C_2 + \frac{1}{j\omega L_2}}.
\]

(10)

The value of \(R_2 \) resistance [36] after cutting the notch is calculated similarly as \(R_1 \). Thus the equivalent circuit of proposed antenna can be given as shown in Figure 6, in which \(L_m \) and \(C_m \) are mutual inductance and capacitance [36-37] between the two resonators.

\[
L_m = \frac{k_c^2(L_1 + L_2) + [k_c^4(L_1 + L_2)^2 + 4k_1^4(1-k_c^2)L_1L_2]^{1/2}}{2(1-k_c^2)},
\]

\[
C_m = \frac{-(C_2 + C_1)^2 + [2(C_2 + C_1)^2 + (1-1/k_c^2)C_1C_2]^{1/2}}{2}
\]

The mutual impedance from Figure 5 can be given as:

\[
Z_m = j\omega L_m + \frac{1}{j\omega C_m},
\]

(11)

Where,

\[
L_2 = L_1 + \Delta L, C_2 = \frac{C_1 \Delta C}{C_1 + \Delta C}, k_c = \frac{1}{\sqrt{Q_1Q_2}},
\]

\[
Q_1 = R_1 \sqrt{\frac{C_1}{L_1}}, Q_2 = R_2 \sqrt{\frac{C_2}{L_2}}.
\]

\(Q_1 \) and \(Q_2 \) are quality factor for both the resonators.

Therefore, the total input impedance of the proposed antenna for Figure 6 is:

\[
Z = Z_n + \left(\frac{Z_m Z_p Z_{p}}{Z_m Z_p + Z_n Z_p + Z_m Z_p} \right),
\]

(12)

Now using Equation (12), one can calculate the total input impedance of the proposed antenna and various antenna parameters such as reflection coefficient, voltage standing wave ratio (VSWR) and return loss (RL) is given as:
Reflection Coefficient $\Gamma = \frac{Z - Z_0}{Z + Z_0}$.

Where Z_0 is the input impedance of the coaxial feed (50 Ω),

$$\text{VSWR} = \frac{1 + |\Gamma|}{1 - |\Gamma|},$$

And $\text{RL}=20 \log |r|$.

4. Radiation Pattern

The radiation pattern for three parallel slots and eight notches loaded single layer patch antenna is calculated by considering it as rectangular patch. The normalized patterns in the E-plane (E_θ in $\phi=0^\circ$ plane) and the H-plane (E_ϕ in $\phi=90^\circ$ plane) [34-37] are given by:

$$E_\theta = \frac{-jk_0WVe^{-jk_0r}}{\pi r} \frac{\sin\left(\frac{k_0W}{2}\sin \theta \sin \phi\right)}{\cos\left(\frac{k_0L}{2}\sin \theta \sin \phi\right)\cos \phi} \quad (0 \leq \theta \leq \pi / 2)$$

$$E_\phi = \frac{-jk_0WVe^{-jk_0r}}{\pi r} \frac{\sin\left(\frac{k_0W}{2}\sin \theta \sin \phi\right)}{\cos\left(\frac{k_0L}{2}\sin \theta \sin \phi\right)\cos \phi \sin \phi} \quad (0 \leq \theta \leq \pi / 2)$$

Where, V is radiating edge voltage.

r is the distance of an arbitrary point.

$k = k_0 \sqrt{\varepsilon_r}$

$$k_0 = \frac{2 \pi}{\lambda}.$$

5. Discussion of Results

Figure 7 shows the variation of reflection coefficient with frequency for various antennas configurations for simple rectangular patch without notches and slots, only slots, only notches, and with notches and slots (proposed) antenna. The characteristics of various antenna configurations are summarized in Table 2. From figure it is observed that simple rectangular patch antenna without notches and slots is resonating at 3.105GHz offers a band width of 131MHz (3.034GHz-3.195GHz) this meets the frequency band of S–band applications. For only notches antenna is resonating at two distinct modes 2.605GHz and 3.075GHz for lower and higher resonance frequencies. This antenna meets the requirement S-band applications for an ISM bands. For slots only antenna resonates at 1.483GHz and 1.953GHz, which meets the requirement of L-band applications for GPS and GSM mobile phones. For proposed microstrip patch antenna (with slots and notches) is resonating at 1.490GHz, 1.953GHz and 2.941GHz, which covers different applications of L and S bands frequency for GSM mobile phones, GPS and in biomedical applications for tumor detection.
Figure 7. Comparative plot of simple rectangular patch (without notches and slots), only notches, only slots and proposed patch antenna with notches and slots

Table 2. Characteristics of Antennas

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Frequency (GHz)</th>
<th>Band (GHz)</th>
<th>Bandwidth (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without notches and Slots</td>
<td>3.105</td>
<td>3.034-3.195</td>
<td>131</td>
</tr>
<tr>
<td>(single band)</td>
<td></td>
<td></td>
<td>4.2%</td>
</tr>
<tr>
<td>Only Notches</td>
<td>2.605</td>
<td>2.404-2.715</td>
<td>311</td>
</tr>
<tr>
<td>(dual band)</td>
<td></td>
<td></td>
<td>12.15%</td>
</tr>
<tr>
<td></td>
<td>3.073</td>
<td>2.935-3.307</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.91%</td>
</tr>
<tr>
<td>Only slots</td>
<td>1.483</td>
<td>1.416-1.515</td>
<td>99</td>
</tr>
<tr>
<td>(dual band)</td>
<td></td>
<td></td>
<td>6.7%</td>
</tr>
<tr>
<td></td>
<td>1.953</td>
<td>1.900-2.002</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.22%</td>
</tr>
<tr>
<td>With notches and Slots (Proposed)</td>
<td>1.490</td>
<td>1.465-1.515</td>
<td>50</td>
</tr>
<tr>
<td>(triple band)</td>
<td></td>
<td></td>
<td>3.7%</td>
</tr>
<tr>
<td></td>
<td>1.953</td>
<td>1.900-2.002</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.22%</td>
</tr>
<tr>
<td></td>
<td>2.941</td>
<td>2.875-3.012</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.65%</td>
</tr>
</tbody>
</table>

Figure 8 shows the comparison of the theoretical results along with simulated [38] and experimental [25] results for proposed antenna. It is found that theoretical and simulated results are in close agreement with the reported experimental results.

From Figure 9, it is observed that on decreasing the length L_s of slots S_1 and S_3 simultaneous from 24mm to 12mm, TM$_{03}$ and TM$_{02}$ resonating modes of the antenna shift towards lower resonance side whereas fine shifting in TM$_{01}$ mode is observed.

Figure 10 shows the variation of reflection coefficient with frequency for different length of the slot S_2. On increasing the length L_s2 of the slot from 12mm to 24mm, fine variation is observed on first and second order frequencies shift towards higher side whereas third order frequency shift towards higher side with higher variation in comparison with first and second order frequencies.

Figure 11 shows the variation of reflection coefficient with frequency for width of the slots (S_1, S_2 and S_3). On increasing the width of the slots W_s from 1mm to 2.5mm, third and first order resonance frequencies shift towards lower resonance side where as second order resonance frequency shift towards higher side. This is happens due to length of slot S_2 which is the half of the slots S_1 and S_3.
Figure 12 shows the variation of reflection coefficient with frequency on varying the length of the notches. On decreasing the notches length N_L from 10mm to 7mm, it is observed that third and second order frequencies shift towards higher side whereas on increasing the length N_L from 10mm to 13mm, third and second order frequencies shifts toward lower side and no variation is observed at first order resonance frequency.

Figure 13 shows the variation of reflection coefficient with frequency on varying the width of the notches. On increasing the width of the notches N_W from 1mm to 5mm, it is observed that third, second, and first order resonance frequencies shift towards lower side. There is slight or negligible variations are observed at first order resonance frequency in most of the variations because first order resonance frequency is consider to be resonance frequency of the simple rectangular patch which shifts toward lower resonance side as notches and slots are incorporated into the patch whereas second and third order resonance frequencies are due notches and slots respectively. Thus, the variations of the width and length of slots and notches are observed on second and third order resonance frequencies. On variation of length and width of notches the input impedance of notches Z_n varies whereas on variation of width and length of slots the input impedance of slots varies which affects the total input impedance Z_{in} of proposed antenna.

Figure 14 shows the radiation pattern of simulated [38] and theoretical results for proposed antenna. From Figure 14 (a)-(c) shows radiation pattern of proposed antenna of E_θ at TM_{01}, TM_{02} and TM_{03} modes respectively. It is found that simulated and theoretical results are in close agreement.

![Figure 9. Variation of reflection coefficient with frequency on varying the length of the slots S_1 and S_3](image)

![Figure 10. Variation of reflection coefficient with frequency on varying the length of the slot S_2](image)

![Figure 11. Variation of reflection coefficient with frequency on varying the width of the slots (S_1, S_2 and S_3)](image)
Figure 12. Variation of reflection coefficient with frequency on varying the length of the notches

Figure 13. Variation of reflection coefficient with frequency on varying the width of the notches N_W

Figure 14. Radiation pattern at (a) 1.490 GHz, (b) 1.953 GHz, and (c) 2.941 GHz for E-plane
6. Conclusion

The theoretical investigation of proposed radiating structure has been carried out along with their similar radiation structures. It has been observed that triple band can be obtained by incorporating slots and notches together on simple rectangular patch. The proposed rectangular patch antenna depends on notches width and length and slots width and length. The proposed radiating antenna lies in L and S frequency bands. This antenna can be utilized in various wireless communication systems such as GSM (mobile phones), GPS and biomedical (tumor detection) applications.

References

[38] Zeland, IE3D simulation software, Version 14.05, Zeland Inc., USA, 2008.