Synthesis of Germanium Dioxide Microclusters on Silicon Substrate in Non-Aqueous Solution by Electrochemical Deposition

Mastura Shafinaz Zainal Abidin\(^1\), Shahjahan\(^2\), Abdul Manaf Hashim\(^3\)
\(^1\)Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
\(^2\)Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
*Corresponding author, e-mail: m-shafinaz@utm.my

Abstract
We report the formation of crystalline germanium dioxide (GeO\(_2\)) microclusters on n-Si (100) electrodeposited in non-aqueous electrolyte (a mixture of 5 vol.% germanium tetrachloride (GeCl\(_4\)) and dipropylene glycol (C\(_6\)H\(_{14}\)O\(_3\)) at current density of 20 mA/cm\(^2\) for 200 sec. Pt, C and Ge are used as an anode while Si acts as a cathode. Field-emission scanning electron microscopy (FESEM) images show that the deposited GeO\(_2\) microclusters are having rounded-mushroom-shaped particles with the smallest size of 660 nm. Energy dispersive x-ray (EDX) spectra reveal that the particles are only composed of Ge and O elements. Raman spectra confirm the formation of crystalline GeO\(_2\) with trigonal bonding structures in all samples. The photoluminescence (PL) spectra show two significant emission peaks in visible range at 2.27 eV and 2.96 eV, which seems to be attributed by GeO\(_2\) and Si defects. \(\text{C}_3\text{H}_7\text{O}_3\) seems to contribute to the formation of GeO\(_2\) due to its hygroscopic nature. Such microcluster structures shall provide some potential applications for electronic and optical devices on Si platform.

Keywords: germanium dioxide, dipropylene glycol, electrochemical deposition, germanium tetrachloride, Mushroom-shaped structure

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Up to date, enormous studies on crystalline Ge thin films and their nanostructures have been carried out and have been proven for excellent potential applications in electronics and optoelectronics field. Ge based compound materials, namely germanium dioxide (GeO\(_2\)) also provides significant merit to be studied in term of their properties and potential applications. GeO\(_2\) is a blue luminescent material and exhibits high values of dielectric constant, refractive index, thermal stability and mechanical strength [1-3]. Its capability as a photosensor has been verified by optical spectroscopic methods such as Raman spectroscopy and electron spin resonance spectroscopy coupled with structural measurements [1]. [4-6]. It has also been considered as one of the promising materials for optical waveguides and nanoconnections in optoelectronic communications [1, 3].

Several methods have been reported for synthesizing GeO\(_2\) [1-3], [7-10]. Bai et al [7] reported the synthesis of GeO\(_2\) nanowires by physical evaporation method while Wu et al [8] employed carbothermal reduction reaction. The synthesis and nanostructuring of patterned α-GeO\(_2\) nanowires by thermal oxidation of metallic Ge was also reported by Hu et al [9]. Recently, Kim and co-workers [10] reported the catalyst free synthesis of GeO\(_2\) nanowires by the heating of Ge powders. The synthesis of GeO\(_2\) by the electrochemical deposition has also attained great attention. Recently, Jawad et al [3] have reported the synthesis, structural, and optical properties of electrochemically deposited GeO\(_2\) on porous Si in a solution of germanium tetrachloride (GeCl\(_4\)) and hydrogen peroxide (H\(_2\)O\(_2\)). In their process, Pt wire was used as an anode while porous Si acted as a cathode. The current densities were varied in the range of 0.5 and 10 mA/cm\(^2\). They obtained the white hexagonal, rounded or faceted monosized submicrometer crystallites with diameter of 500 nm. They showed that density of GeO\(_2\) crystallites increase with the applied current density.

Received January 1, 2017; Revised March 4, 2017; Accepted March 20, 2017
Several reports [1, 12-14] show the electrochemical deposition of Ge from the electrolyte formed by GeCl₄ and glycol. Huang et al. [14] demonstrated that Ge films and nanostructures could be deposited on n-Si using GeCl₄ in 1,3-propanediol electrolytes. Szekely [15] who pioneered the work on electrochemical deposition of Ge film from GeCl₄ in propylene glycol (C₃H₈O₂) electrolyte reported the metallic Ge deposition at 50 to 60 °C temperature on copper (Cu). In 2002, Saitou et al. [13] reported similar work on the deposition of Ge thin film on Cu with various durations at 300 K.

In this study, an electrochemical deposition of GeO₂ microstructures is reported. We utilized a mixture of GeCl₄ and dipropylene glycol (C₆H₁₄O₃) as a non-aqueous electrolyte for the electrochemical process. To the best of our knowledge no study has been conducted on the electrodeposited materials using such non-aqueous electrolyte. The results in this study show that the electrodeposited material was considerably high quality GeO₂ microstructures.

2. Research Method

An n-type phosphorus-doped Si (100) wafer with thickness: 355-405 μm and resistance: 0.7-1.3 Ωcm was used. A mixture of the as-received 5% GeCl₄ in C₆H₁₄O₃ (Merck, purity > 99.9%) were used as a non-aqueous electrolyte. The schematic of the electrochemical deposition setup is shown in Figure 1. The electrochemical deposition process was carried out in a simple teflon cell by using two terminal configuration where n-Si (100) substrate acts as a cathode, located at the bottom of the cell whereas three different electrodes, Pt/ C/ Ge act as an anode. The deposition was carried at room temperature in open-air ambient at a current density of 20 mA/cm² for 200 sec. Prior to deposition process, all samples were pre-cleaned by standard RCA process.

![Figure 1. Schematic diagram of electrochemical deposition setup.](image)

The deposited substance was then characterized by using field emission scanning electron microscopy (FESEM) equipped with energy dispersive x-ray (EDX) spectroscopy (FESEM JEOL JSM6701F), Raman spectroscopy (Horiba Jobin Yvon spectrometer equipped with an argon ion (Ar⁺) laser of 514 nm, 20 mW) and photoluminescence (PL) spectroscopy (Horiba Jobin Yvon spectrometer equipped with HeCd laser of 325 nm).

3. Results and Analysis

3.1. FESEM and EDX Analysis

Figure 2(a), (b) and (c) shows FESEM images and EDX spectra for three samples deposited using Pt, C and Ge anode, respectively. The deposited substances shows microcluster structure distributed randomly. EDX spectra reveal that the deposited substance is only composed by Ge and O element. The traces of Si observed in all samples correspond to
the Si substrate. In glance, the highest density of microclusters was obtained for sample deposited using Ge anode.

![Figure 2. FESEM images and EDX spectra of deposited substance on Si with (a) Pt, (b) C and (c) Ge anode.](image)

In term of morphological structures, it seems to show no significant difference among the samples since the grown structures shows the rounded mushroom-like shape. However, the sizes of the grown structures are different and also the density as defined by the number of clusters per unit area for the sample deposited by Ge anode is higher compared to samples with Pt and C anodes which are known to be chemically inert. At this stage, the possible reason for this is still unexplained. Since the deposition was carried out in open-air ambient, we speculated that C$_6$H$_{14}$O$_3$ has absorbed moisture from the air due to its hygroscopic nature. The hydrolysis of GeCl$_4$ with water molecules present in C$_6$H$_{14}$O$_3$ may result in the formation of GeO$_2$ microclusters. These GeO$_2$ microclusters were further confirmed by the measured Raman and PL spectra in the next section. The possible chemistry occurring in the solution due to hygroscopic effect might be denoted as follows:

$$GeCl_4 + 2H_2O \rightarrow GeO_2^{2+} + 4HCl$$

(1)

We have repeated the similar experiment in air-free ambient. Here, the preparation of electrolyte and growth were carried out in nitrogen, N$_2$ filled glove box. It was found that no O element was detected in the grown structures [16]. Therefore, it can be said that that C$_6$H$_{14}$O$_3$ has effectively absorbed moisture from the air to generate the formation of GeO$_2$.

As evident from Figure 2, the particles formed in all samples are rounded-mushroom-like shaped, varying in diameter as well as the density which was defined as the number of particles per unit area. The average particle size obtained in samples deposited using Pt, C and Ge are 1.66, 0.66 and 1.49 μm, respectively. Here, the smallest particle size was observed for sample deposited using C anode. Also, at this stage, the possible reason for such result is still unexplained. Table 1 summarizes the experimental parameter and structural of the synthesized Ge with several comparisons to other similar works.
Table 1. Synthesis parameter of grown Ge structures

<table>
<thead>
<tr>
<th>Solution/Elecrolyte</th>
<th>Electrode</th>
<th>Substrate</th>
<th>Morphological structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work GeCl₄ in dipropylene glycol</td>
<td>Pt/C/Ge</td>
<td>n-Si (100)</td>
<td>rounded mushroom-like with diameter 0.6-1.7 µm</td>
</tr>
<tr>
<td>[3] GeCl₄ in H₂O₂</td>
<td>Pt</td>
<td>porous Si</td>
<td>GeO₂ particles with random shape, with smallest diameter 500 nm</td>
</tr>
<tr>
<td>[13] GeCl₄ in propylene glycol</td>
<td>C</td>
<td>Cu</td>
<td>mirror-like Ge film</td>
</tr>
<tr>
<td>[11] GeCl₄ in 1,3-propanediol</td>
<td>C</td>
<td>n-Si(100)</td>
<td>i) Ge film (138 nm thick)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ii) Ge pillars and wires with diameter 200 nm and 300 nm tall</td>
</tr>
<tr>
<td>[17] HF:Ethanol based solution containing Ge species</td>
<td>Pt</td>
<td>n-Si(100)</td>
<td>i) flower-like Ge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ii) spherical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iii) uniform film layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iv) needle type</td>
</tr>
</tbody>
</table>

3.2. Raman and Photoluminescence (PL) Spectra Analysis

The Raman spectra obtained in the present study is shown in Figure 3 and all significant peaks are summarized in Table 2 together with previous reported data [18-19].

![Raman spectra](image)

(a) Figure 3. (a) Raman spectra of GeO₂ deposited on Si substrate using Pt, C and Ge anode and (b) enlarged Raman spectra in the range of 200-400 cm⁻¹

Table 2. Raman lines (cm⁻¹) of GeO₂ polymorphs

<table>
<thead>
<tr>
<th></th>
<th>[18-19]</th>
<th>[19]</th>
<th>This work</th>
<th>GeO₂ (trigonal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeO₂ (rutile)</td>
<td>GeO₂ (trigonal)</td>
<td>Pt</td>
<td>GeO₂ (trigonal)</td>
<td>GeO₂ (trigonal)</td>
</tr>
<tr>
<td>701</td>
<td>593</td>
<td>590</td>
<td>592</td>
<td>592</td>
</tr>
<tr>
<td>583</td>
<td></td>
<td>586</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>521</td>
<td>521</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>443</td>
<td>444</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td>331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>265</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>215</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>166</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>123</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

A strong peak was clearly identified at 520 cm⁻¹ which corresponded to peak from Si substrate. From Figure 3(a), it can be observed that the samples deposited using Pt, C and Ge show the peaks at 443 cm⁻¹, 444 cm⁻¹, and 445 cm⁻¹, respectively, corresponding to crystalline
GeO$_2$. Generally, crystalline GeO$_2$ is observed at the peak of 444 cm$^{-1}$. A small shift of 1 cm$^{-1}$ could be due to symmetric Ge-O-Ge stretching, attributed to the optical phonon mode of nonstoichiometric Ge oxides [1].

Based on Raman lines of GeO$_2$ polymorphs comparison, it can be concluded that trigonal GeO$_2$ has been obtained for all samples in the present study. The results obtained for significant peaks are in good agreement with literature [1, 19]. The small discrepancies in shifting may be attributed by the effect of complex translation and rotation of the GeO$_4$ tetrahedra structure [1, 19].

In further observation, the small peak at 300 cm$^{-1}$ was observed in the Raman spectra of Pt-anode sample as shown in Figure 3(b). Assuming that this peak is not the peak of optical phonon mode of Si at 299 cm$^{-1}$ but corresponds to Ge optical phonons [10, 20], we can say that the deposited GeO$_2$ clusters contain Ge nanocrystals. If that Ge nanocrystal is close to spherical shape, the Raman intensity can be written as [21-22]:

$$I(\omega) = A \times \sum_{i=1}^{6} \left[n(\omega_i(q)) + 1 \right] \frac{4\pi q^2 \exp \left(-q^2 r_0^2 / 4 \right)}{(\omega - \omega_i(q))^2 + (\Gamma / 2)^2} dq$$ \hspace{1cm} (2)

where $n(\omega)$ is the Bose-Einstein occupation number, $\omega_i(q)$ is the dispersion of the ith phonon branch, Γ is the line width, r_0 is the nanocrystal radius, and q is the the wave vector. The similar peak at 300 cm$^{-1}$ was also observed by Volodin et al. [22]. From the calculation using equation (2), the average radius of Ge nanocrystal was estimated to be around 1.3 nm [22]. The presence of Ge nanocrystalline in GeO$_2$ may leads to an interesting application as this kind of structure can be possibly used in optoelectronic devices [22].

Figure 4 shows PL emission spectra of samples deposited using Pt, C and Ge anode, respectively. The two peaks including one significant at 2.27 eV (546.8 nm in green region) and a shoulder at 2.96 eV (418.8 nm in blue region) can be observed. The two peaks in PL spectra obtained in this study, are slightly similar as reported by Kim et al. [10]. In their work [10], the PL spectra was best fitted with two Gaussian functions centered at 2.45 eV and 2.91 eV. They suggested that blue and green light emissions originated from radiative recombination with regard to defects in GeO$_2$, including oxygen vacancies and oxygen-germanium vacancy centers.

The visible band around 2.27 eV indicated the different types of defects in Si [23]. In addition, Gao et al. [24] has ruled out on emission probability of quantum confinement in visible region on Ge nanocrystals which indicate that 2.9 eV can also be attributed to the transition from triplet to singlet in GeO$_2$ defects containing two non-bonding electrons [23, 25].
transition from singlet to singlet forms the ground state of defect. This excitation is related to the presence of Ge and O as a clear trend of stronger blue PL is usually observed with the increase of O/Ge ratio. Thus, GeO₂ with weak blue PL peak might indicates that it contains more Ge-O related defect.

4. Conclusion

Electrochemical deposition using the mixture GeCl₄ and C₆H₄O₃ in open air ambient seems to contribute to the formation of GeO₂ microclusters. Due to hygroscopic nature of C₆H₄O₃ the water molecule from the air will be absorbed and then react with the GeCl₄ with the passage of electricity to form GeO₂ clusters to be deposited on the substrate. The all deposited rounded-mushroom-shaped microclusters show trigonal bonding structure with the smallest size of 660 nm. The deposited GeO₂ microcluster with embedded Ge nanocrystalline structures shall provide some potential applications for electronic and optical devices on Si platform.

References

