Comparison of Flying Capacitor Fifteen Level Inverter and Thirty Three Level Inverter PWM Control Strategies

Farouk Hadj Benali*, Fouad Azzouz
University of Science and Technology of Oran Mohamed Boudiaf, Faculty of Electrical Engineering Oran, Algeria
*Corresponding author, e-mail: farouk.hadjbenali@univ-usto.dz

Abstract

In the paper two PWM control strategies of multilevel flying capacitor inverter is proposed. The study starts with a presentation of the Flying capacitor inverter and the two PWM control strategies (SPWM and Suboptimal PWM). Then a section which presents a brief recall of the triangular multicarrier PWM and the sinusoidal multicarrier PWM. A comparison between the two PWM control strategies based on the simulation results is made. The subjects of comparison are the root mean square rms of the output voltage and the total harmonic distortion THD. The obtained results have proved that the Suboptimal PWM is better than the SPWM. Simulations are carried out by PSIM program.

Keywords: Flying capacitor multilevel inverter, SPWM, suboptimal PWM, triangular multicarrier, sinusoidal multicarrier

1. Introduction

The concept of multilevel converters has been introduced since 1975 [1-2]. The term multilevel began with the three-level converter [3]. Subsequently, several multilevel converter topologies have been developed [4]. The main motivations behind multilevel inverters are on one hand the increase of power through the voltage generation of higher voltage beyond those compatible with cut off voltages of power semiconductor devices; on the other hand we seek to obtain output quantities that present a reduced harmonic content [5]. The benefit of multilevel inverter use lies in their ability to generate waveforms of good quality, a decrease commutation frequency, a reduction of power losses, and a lessening of static component strain. The multilevel inverters still require many improvements and optimization in the control area. Among these control strategies, we distinguish three PWM structures; the SPWM, the SVPWM [6], and the SHEWPM [7]. Optimized harmonic-stepped waveform (OHSW) and optimal minimization of THD (OMTHD) are used for harmonic optimization [8].

This study is dedicated to the improvement of the rms and the total harmonic distortion of the output voltage by the level increase of flying capacitor multilevel inverter until 33 levels along with the optimization of SPWM control strategies.

2. Flying Capacitor Multilevel Inverter

Meynard and Foch introduced a flying-capacitor-based inverter in 1992 [9]. This structure is based on connecting in series commutation cells between which is inserted a floating voltage source. These floating voltage sources are carried out by condensers. The structure of such inverter is similar to that of the NPC inverter except that instead of clamp diodes, the flying capacitor inverter uses capacitors. The main advantages of multilevel flying capacitor converters are as follows [10-11]:

1. Phase redundancies are available for balancing the voltage levels of the capacitors [10-11].
2. Real and reactive power flow can be controlled [10-11].
3. The large number of capacitors enables the inverter to ride through short duration outages and deep voltage sags [10-11].

The number of levels is computed by the following formula [12]:

\[N = P + 1 \]
N: number of voltage levels.

P: number of complementary switches pairs per phase.

In usual working pattern, voltages across the capacitors are balanced.

The voltage across the capacitors is equal to:

$$U_{ck} = 1 - \frac{k}{(N - 1)}$$

$k = 1, 2, 3, \ldots, (N - 2)$

U_{ck}: voltage across the capacitors

k: rank of capacitor

N: Number of levels of output voltage.

Figure 1 shows a one leg flying capacitor fifteen level inverter.

Figure 2 shows a one leg flying capacitor thirty three level inverter.
3. PWM Modulation Strategies
3.1. Sinusoidal Pulse Width Modulation SPWM

Introduced by Schonung in 1964 [13]. In order to generate the output voltage waveform, the sinus wave reference voltage called modulating signal that has an amplitude A_r and a frequency F_r is compared to one or several carriers that have the same amplitude A_p and the same frequency F_p. For a carrier higher or equal to the reference, the comparison gives 1 and 0 if the carrier is below the reference. The number of carriers required to produce N level output is $(N-1)$.

The SPWM is characterized by two parameters: Modulation index m and Modulation rate r.
In this paper, two carrier based SPWM techniques are developed as follows:
1. Triangular Multi carrier SPWM.
2. Sinus multi carrier SPWM.
3.2. Suboptimal PWM

Optimal PWM (or suboptimal) enables to reduce voltage waste by injection of harmonic 3 in the reference (or the modulating) [14], [19]. This control strategy allows us to increase the maximal amplitude of the fundamental of the resulting wave, without that the modulating amplitude does not go beyond \((Ap/2)\) by the injection of harmonic 3 in the modulating signal. This harmonic 3 found in output voltages is eliminated by the three phase system in single voltages and phase to phase voltages [15]. This method is shown by Figure 3.

![Figure 3. Voltage waveforms: waveform of the resulting voltage \(V_{re}\) (red); waveform of the modulating voltage \(V_m\) (blue); waveform of the third harmonic voltage \(V_{h3}\) (green)](image)

The modulating is expressed as follows:

\[
V_{re} = V_m + V_{h3}
\]

\[
V_{re} = A_m \sin(\theta) + A_{h3} \sin(3\theta)
\]

\[
A_{h3} = A_m / 6
\]

\(V_{re}\): resulting voltage waveform

\(A_m\): modulating amplitude

\(A_{h3}\): harmonic order 3 amplitude

In this paper, two carriers based Suboptimal PWM techniques are developed as follows:

1. Triangular Multi carrier Suboptimal PWM
2. Sinus multi carrier Suboptimal PWM

In our study we use the SPWM and the Suboptimal PWM control strategies for two kinds of carriers, the triangular multicarrier wave and the sinusoidal multicarrier wave. The output voltage waveform is shown through simulations using PSIM for a fifteen and thirty three level flying capacitor inverter.

3.3. Triangular Multicarrier PWM

This strategy is based on the comparison of a sine wave reference voltage \(U_r\) called modulating signal which has an amplitude \(A_r\) and a frequency \(F_r\) to one or more triangle carriers \(U_p\) which have the same amplitude \(A_p = 2/(N - 1)\) and the same frequency \(F_p\).

For \(N\) level inverter, \((N-1)\) level carriers [16] with the same frequency \(F_p\) and the same peak amplitude \(A_p\) are disposed such as the bands they occupy are contiguous. They are defined as [17]:

\[
C_i = A_p \left\{ (-1)^{i-1} y_i(w, \varphi) + t \right\} - (N/2)
\]

\(i = 1, \ldots, LN - 1\)

Where \(y_i\) is a normalized symmetrical triangular carrier defined as,
\[y_p = (-1)^{[\alpha]}((\alpha \mod 2) - 1) + 1/2 \]
\[\alpha = (w_p t + \phi)/\pi = 2\pi F_p \]

\(\phi \) represents the phase angle of \(y_p \).

\(y_p \) is a periodic function with the period [18]:
\[T_p = 2\pi / w_p \]

Modulation index:
\[m = A_i/((N-1)A_p) \]

Modulation rate:
\[r = F_p/F, \]

The SPWM and Suboptimal PWM control strategies are implemented using triangular multicarrier signals for a 7 level Flying Capacitor. They are shown in Figure 4.

Figure 4. (a) Triangular multicarrier SPWM, (b) Triangular multicarrier Suboptimal PWM

3.4. Sine Multicarrier PWM

In this SPWM technique, triangular multicarriers are replaced by sinusoidal multicarriers. The representative curve of sine wave is \(y = \sin(x) \) accepts the origin as symmetry centre. The same goes for all the points where the curve crosses the x axis. The surfaces of positive half cycle and negative half cycle are equal. The function average taken over a period is thus neutral. So the sine function is an alternate function. For \(N \) level inverter, \((N-1)\) level carriers with the same frequency \(F_p \) and the same peak amplitude \(A_p \).

Modulation index:
\[m = A_i/(2(N-1)A_p) \]

Modulation rate:
\[r = F_p/F, \]

The SPWM and Suboptimal PWM control strategies are implemented using sinusoidal multicarrier signals for a 7 level Flying Capacitor. They are shown in Figure 5.
Comparison of Flying Capacitor Fifteen Level Inverter and Thirty Three … (Farouk Hadj Benali)

4. Simulation Results

In order to know which of the two control strategies (SPWM and Suboptimal PWM) has the highest performances, a comparative study based on the THD and the rms (V) of the output voltage \(V_{ab} \) for the two types of carriers (triangular multicarrier and sinusoidal multicarrier) is done. Fifteen and thirty three level flying capacitor inverter simulations are carried out by PSIM program. In order to get the THD of The output waveform, a Fast Fourier Transform (FFT) of PSIM program is applied to obtain the spectrum of the output phase voltage \(V_{ab} \).

4.1. SPWM Control Strategy

Figure 6, Figure 7, Figure 8 and Figure 9 show the phase voltage waveform \(V_{ab} \) and harmonic spectra for the triangular multicarrier with \(m=0.95 \) and switching frequency of 10 kHz for the 15 and 33 level Flying Capacitor inverter respectively.
Figure 10, Figure 11, Figure 12 and Figure 13 show the phase voltage waveform $V_{ab}(V)$ and harmonic spectra for the sinusoidal multicarrier with $m=0.95$ and switching frequency of $10\, kHz$ for the fifteen and thirty tree level Flying Capacitor inverter respectively.

![Figure 10](image1.png)
Figure 10. Fifteen level inverter output phase voltage $V_{ab} (V)$

![Figure 11](image2.png)
Figure 11. FFT analysis of Sinusoidal Multi Carrier SPWM for Fifteen level inverter

![Figure 12](image3.png)
Figure 12. Thirty three level inverter output phase voltage $V_{ab} (V)$

![Figure 13](image4.png)
Figure 13. FFT analysis of Sinusoidal Multi Carrier SPWM for Thirty three level inverter

Table 1 and Table 2 show the total harmonic distortion THD and the $rms\, (V)$ of output voltage $V_{ab} (V)$ respectively for fifteen and thirty tree level Flying capacitor inverter with the triangular multicarrier and sinusoidal multicarrier signals for the SPWM control strategy with a switching frequency of $10\, kHz$, for modulation index of $m=0.95$.

<table>
<thead>
<tr>
<th>N</th>
<th>Triangle multi carrier</th>
<th>Sinusoidal multi carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>5.13</td>
<td>4.99</td>
</tr>
<tr>
<td>33</td>
<td>2.29</td>
<td>2.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Triangle multi carrier</th>
<th>Sinusoidal multi carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>128.22</td>
<td>128.03</td>
</tr>
<tr>
<td>33</td>
<td>127.96</td>
<td>128.11</td>
</tr>
</tbody>
</table>

According to the tables above, it is observed that when the number of levels of the flying capacitors increases, the total harmonic distortion decreases for the triangular multicarrier and the sinusoidal multicarrier.
From the simulation results, the sinusoidal multicarrier SPWM control strategy for the flying capacitor fifteen and thirty three level inverter has the smallest THD related to the triangle multicarrier SPWM control strategy.

The increase of level number of the flying capacitor inverter has also an influence over the rms of output voltage \(V_{ab} \). The triangular multicarrier: the rms decreases when the level number of flying capacitor increases. The sinusoidal multicarrier: the rms increases when the level number of flying capacitor increases.

From the simulation results (Figure 7, Figure 9, Figure 11 and Figure 13):

The fifteen level triangular multicarrier: from the 5th to the 19th harmonic, the harmonic amplitude related to the fundamental is between 4.38% and 1.04%. And from the 20th to the 40th harmonic, the harmonic amplitude related to the fundamental is between 0.98% and 0.58%. And from the 41st to the 400th harmonic, the harmonic amplitude related to the fundamental is less than 0.5%. Except for the 160th, 162nd, 138th and 240th harmonic, the harmonic amplitudes related to the fundamental are 1.07%, 1.29%, 1.12% et 1.09% respectively.

The fifteen level sinusoidal multicarrier: from the 5th to the 19th harmonic, the harmonic amplitude related to the fundamental is between 4.38% and 1.04%. And from the 20th to the 40th harmonic, the harmonic amplitude related to the fundamental is between 0.98% and 0.58%. And from the 41st to the 400th harmonic, the harmonic amplitude related to the fundamental is less than 0.5%. Except for the 160th, 162nd, 138th and 240th harmonic, the harmonic amplitude related to the fundamental are 0.93%, 0.92%, 0.9% et 0.8% respectively.

4.2. Suboptimal PWM Control Strategy

Figure 14, Figure 15, Figure 16 and Figure 17 show the phase voltage waveform \(V_{ab} \) and the harmonic spectra for the triangular multicarrier with \(Ar=1.155 \), \(Ah3=0.1925 \) and a switching frequency of 10 kHz for the fifteen and thirty three level Flying Capacitor inverter respectively.
Figure 18, Figure 19, Figure 20 and Figure 21 show the phase voltage waveform $V_{ab}(V)$ and the harmonic spectra for the sinusoidal multicarrier with $A_1=1.155, A_{h3}=0.1925$ and a switching frequency of 10 kHz for the fifteen and thirty three level Flying Capacitor inverter respectively.

![Figure 18. Fifteen level inverter output phase voltage $V_{ab}(V)$](image1.png)

![Figure 19. FFT analysis of Sinusoidal Multi Carrier Suboptimal PWM for fifteen level inverter](image2.png)

![Figure 20. Thirty three level inverter output phase voltage $V_{ab}(V)$](image3.png)

![Figure 21. FFT analysis of Sinusoidal Multi Carrier Suboptimal PWM for thirty three level inverter](image4.png)

Table 3 and Table 4 show the total harmonic distortion THD and the rms of output voltage $V_{ab}(V)$ respectively for fifteen and thirty three level Flying capacitor inverter with the triangular multicarrier and sinusoidal multicarrier signals for the Suboptimal PWM control strategy with a switching frequency of 10 kHz.

<table>
<thead>
<tr>
<th>N</th>
<th>Triangle multi carrier</th>
<th>Sinusoidal multi carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4.06</td>
<td>4.23</td>
</tr>
<tr>
<td>33</td>
<td>1.79</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Table 4. The rms (V) of output voltage $V_{ab}(V)$

<table>
<thead>
<tr>
<th>N</th>
<th>Triangle multi carrier</th>
<th>Sinusoidal multi carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>155.69</td>
<td>154.41</td>
</tr>
<tr>
<td>33</td>
<td>155.60</td>
<td>155.32</td>
</tr>
</tbody>
</table>

According to the tables above, it is observed that when the level number of flying capacitor increases, the total harmonic distortion decreases for the triangular multicarrier and the sinusoidal multicarrier.
From the simulation results, the triangular multicarrier SPWM control strategy for the flying capacitor fifteen level inverter has the smallest THD related to the sinusoidal multicarrier SPWM control strategy.

The increase of level number of flying capacitor has also an influence over the rms value of the output voltage V_{ab} (V). According to the tables 2 and 4, the suboptimal PWM allowed us to deal with the under exploitation flaw of the DC supply E by the SPWM strategy. The rms of applied voltages to the load is increased by adding to the reference sinusoidal the harmonics 3 of the voltage. In our case, the rms voltage is improved up to 70.76% of E instead of 58.28% of E in SPWM.

From the simulation results (Figure 15, Figure 17, Figure 19 and Figure 21): The fifteen level triangular multicarrier: from the 5th to the 20th harmonic, the harmonic amplitude related to the fundamental is between 4.38% and 1.01%. And from the 21st to the 39th harmonic, the harmonic amplitude related to the fundamental is between 0.94% and 0.50%. And from the 40th to the 400th harmonic, the harmonic amplitude related to the fundamental is less than 0.5%. Except for the 192nd, 198th, 202nd, 208th and 399th harmonic, the harmonic amplitude related to the fundamental are 0.84%, 0.77%, 0.88%, 0.91% et 1% respectively.

From the simulation results (Figure 7, Figure 9, Figure 11 and Figure 13): The fifteen level sinusoidal multicarrier: from the 5th to the 20th harmonic, the harmonic amplitude related to the fundamental is between 4.37% and 1.01%. And from the 21st to the 40th harmonic, the harmonic amplitude related to the fundamental is between 0.96% and 0.56%. And from the 41st to the 400th harmonic, the harmonic amplitude related to the fundamental are 0.84%, 0.56%, 0.59%, 0.76% and 1.2% respectively.

5. Conclusion

In this paper SPWM and Suboptimal PWM control strategies of fifteen and thirty three flying capacitor inverter are presented.

The THD and rms are measured, presented and analyzed. It is found that the suboptimal PWM control strategy gives the lowest total harmonic distortion THD and the highest rms of the output voltage for the two types of carriers (triangular multicarrier and sinusoidal multicarrier) compared to the SPWM.

Except that the suboptimal PWM using the triangular multicarrier has the best performance than the suboptimal PWM using the sinusoidal multicarrier for the fifteen and thirty three level flying capacitor inverter.

References

