2D Optical Fiber Wave Guide Design for Multi Haul Applications

Venkata Raghavendra Miriampally
Department of Electrical Engineering, Adama Science & Technology University, Adama, Ethiopia

ABSTRACT
The optical communications had an exponential growth over the last few years, having a significant commercial market in optical systems and components. This growth has been extended across all application areas, from transcontinental and transoceanic distances to regional networks and lastly to campus and building wiring. This paper basically explains the concept of Optical fiber communication, the propagation of light inside the fiber and mainly the two dimensional design of optical fiber itself. The researcher discusses the parameters such as effective group delay, dispersion. Modes, Bending Loss, Material Loss, Mode field, Birefringence, Splice Loss, Polarization Mode Dispersion (PMD), Effect of nonlinear Refractive Index. Finally we design the optical fiber with all the above mentioned parameters.

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

1. INTRODUCTION
In the early stages of development of technology, fiber communication promised extremely high data rates, which allow large amount of data to be transmitted at a higher data rate. It also had the potential for transmission over long distances without a repeater. The bandwidth of the fiber optic communication system, determines the maximum data rate and the major components of the system. Figure 1 shows the block diagram of fiber optic communication system. The information signal that is to be transmitted may be computer data, video or voice. The first step is to convert the information into a form well suited with the communications medium. This is usually done by altering continuous analog signals such as TV (voice and video) signals into a series of digital pulses.

An A/D converter is used for this purpose. These digital pulses are then used to flash a powerful light source to off and on very rapidly. In a simple system for short distances, the light source is usually a light emitting diode. This is a semiconductor device that gives low intensity red light. Other colors are also used. Another commonly used light source is the solid state laser that generates an extremely high intense coherent light beam. This light beam pulses are then fed into a fiber cable where they are communicated over long distances. At the receiving end, a light sensitive device known as a light detector or photocell is used to detect the light pulses. This photo detector or photocell converts the light pulses into an electrical signal.
The electrical pulses are then amplified and reshaped back into digital form. Both the sources at the sending end and the detectors on the receiving end must operate at the same data rate. The device that drives the light source and the circuit that amplify and process the detected light must have suitable high-frequency response. The fiber itself must not garble the high-speed light pulses used in the data transmission. They are given as an input to a decoder, such as a D/A, where the original data is recovered. In very long transmission systems, repeaters are used along the way. Since the light is significantly attenuated when it travels over long distances, at some distance it may be too weak to be received constantly. To overcome this difficulty, special repeater stations are used to pick up light beam, they convert it back to electrical pulses that are amplified and then re-transmit them. Several stages of repeaters are desired over very long distances. This attenuation is due to so many parameters and we will discuss them in detail as follows.

2. EFFECTIVE GROUP DELAY

If the index of refraction of the fiber material varies with wavelength causing the group velocity to vary, it is represented as material dispersion.

The group delay T_g is given by the product of the transmission distance z by the first derivative of frequency of the propagation constant:

$$T_g = \frac{d\beta_k}{d\omega} \frac{d\lambda}{d\lambda} (n_k)$$

where λ is the refractive index; $\lambda = \frac{2\pi}{\omega}$, $k_0 = \frac{2\pi}{\lambda}$.

We have

$$T_g = \frac{-2\pi c}{\omega^2} \left(k_0 \frac{dn}{d\lambda} + \frac{dk_0}{d\lambda} \right) = \frac{z}{c} \left(n - \frac{dn}{d\lambda} \right)$$

The dispersion coefficient D is defined as $D = \frac{d^2\beta_k}{d\lambda^2}$; in bulk materials we have $D = -\frac{z}{c} \frac{d^2n}{d\lambda^2}$

2.1. Material Dispersion of the Fiber

We have an equation that the velocity of light in a medium is given by $v = c/n$. Where n is the refractive index of the medium, which depends on the wavelength. This dependence of the refractive index on wavelength leads to dispersion, if a white pencil light beam incident on a prism. Since the refractive index of glass depends on the wavelength, the angle of refraction will be different for different colors. The incident light will therefore disperse into its constituent colors, the dispersion will become more evident at the second surface of the prism. The quantity v defined is usually referred to as the phase velocity.
However, a pulse travels with is known as the group velocity, which is given by $v_g = c/n_g$; where n_g is known as the group index and, in most cases its value is slightly larger than n. In Table 1 we have represented n and n_g for pure silica for varying wavelength between 700 nm and 1600 nm.

<table>
<thead>
<tr>
<th>λ_0 (nm)</th>
<th>$n(\lambda_0)$</th>
<th>$n_g(\lambda_0)$</th>
<th>$D_{nmps/(nm-km)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>1.45561</td>
<td>1.47154</td>
<td>-172.902</td>
</tr>
<tr>
<td>750</td>
<td>1.45456</td>
<td>1.46924</td>
<td>-135.313</td>
</tr>
<tr>
<td>800</td>
<td>1.45364</td>
<td>1.46744</td>
<td>-106.609</td>
</tr>
<tr>
<td>850</td>
<td>1.45282</td>
<td>1.46601</td>
<td>-84.2077</td>
</tr>
<tr>
<td>900</td>
<td>1.45208</td>
<td>1.46489</td>
<td>-66.382</td>
</tr>
<tr>
<td>950</td>
<td>1.45139</td>
<td>1.46401</td>
<td>-51.9441</td>
</tr>
<tr>
<td>1000</td>
<td>1.45075</td>
<td>1.46332</td>
<td>-40.0577</td>
</tr>
<tr>
<td>1050</td>
<td>1.45013</td>
<td>1.46279</td>
<td>-30.1214</td>
</tr>
<tr>
<td>1100</td>
<td>1.44954</td>
<td>1.46241</td>
<td>-21.6951</td>
</tr>
<tr>
<td>1150</td>
<td>1.44896</td>
<td>1.46214</td>
<td>-14.4511</td>
</tr>
<tr>
<td>1200</td>
<td>1.44839</td>
<td>1.46197</td>
<td>-8.14213</td>
</tr>
<tr>
<td>1250</td>
<td>1.44783</td>
<td>1.46189</td>
<td>-2.57872</td>
</tr>
<tr>
<td>1300</td>
<td>1.44726</td>
<td>1.46189</td>
<td>2.38579</td>
</tr>
<tr>
<td>1350</td>
<td>1.44670</td>
<td>1.46196</td>
<td>6.86631</td>
</tr>
<tr>
<td>1400</td>
<td>1.44613</td>
<td>1.46209</td>
<td>10.9539</td>
</tr>
<tr>
<td>1450</td>
<td>1.44556</td>
<td>1.46229</td>
<td>14.7211</td>
</tr>
<tr>
<td>1500</td>
<td>1.44498</td>
<td>1.46253</td>
<td>18.2268</td>
</tr>
<tr>
<td>1550</td>
<td>1.44439</td>
<td>1.46283</td>
<td>21.5187</td>
</tr>
<tr>
<td>1600</td>
<td>1.44379</td>
<td>1.46318</td>
<td>24.6358</td>
</tr>
</tbody>
</table>

Figure 2. Refractive Index vs. Wavelength (nmt)

In a fiber, the core and cladding are fabricated with different materials. We assume that there are L layers in the fiber cross-section, each layer has its own refractive index.

The total material dispersion of the optical fiber is calculated by:

$$D(\lambda) = -\frac{2}{\lambda} \sum_{i=1}^{L} \Gamma_i \frac{d^2 n_i}{d\lambda^2}$$

(1)

where Γ_i is the confinement factor of each layer. The confinement factor is the portion of total power guided in the i^{th} layer.

2.2. Waveguide Dispersion of the Fiber

Wavelength dependence of the effective refractive index N_{eff} of the fiber mode results in waveguide dispersion. The waveguide dispersion is calculated by:

$$D_{wg} = -\frac{2}{\lambda} \frac{d^2 N_{eff}}{d\lambda^2}$$
2.3. Total Dispersion of the Fiber
The total dispersion is the total effect of different dispersions such as material and waveguide. First the material dispersion effect will be calculated. Then the mode solver calculates the mode effective index N_{eff}. The total dispersion of a fiber is:

$$D_{\text{tot}} = -\frac{z}{c} \Lambda \frac{d^2 N_{\text{eff}}}{dz^2}$$ \hspace{1cm} (2)

3. MODE FIELD DIAMETER AND MODE AREA DEFINITIONS MODE FIELD DIAMETER AND AREA IMPORTANCE
The Mode Field Diameter is an important parameter related to the optical field distribution in the fiber. It has been shown that MFD provides useful evidence about the fiber cabling behavior, such as possible joint, macrobending, and microbending losses. The actual area of the fibers has a relation to the nonlinear distortions in long fiber links.

3.1. Near-Field Diameter Definition
The near-field Mode Field Diameter is also known as the “Petermann I” diameter. It is defined as the diameter at which the near field power falls to $\frac{1}{e^2}$ of its maximum value. It can be calculated by [1]:

$$d_n = 2\sqrt{\frac{\int_{0}^{\infty} \frac{E^2(r) rdr}{\int_{0}^{\infty} E^2(r) rdr}}{\int_{0}^{\infty} E^2(r) rdr}}^{1/2}$$ \hspace{1cm} (3)

where $E(r)$ is the optical mode field distribution.

3.2. Far-Field Diameter Definition
The far-field Mode Field Diameter is also known as the “Petermann II” diameter. It is defined as the diameter at which the far field power falls to $\frac{1}{e^2}$ of its maximum value. It can be calculated by [1]:

$$d_n = 2\sqrt{\frac{\int_{0}^{\infty} \frac{E^2(r) rdr}{\int_{0}^{\infty} |E'(r)|^2 rdr}}{\int_{0}^{\infty} |E'(r)|^2 rdr}}^{1/2}$$ \hspace{1cm} (4)

where $E(r)$ is the optical mode field distribution, and prime denotes the first derivative of $E(r)$

3.3. Effective Mode Area Definition
The effective Mode Area is calculated as

$$A_{\text{eff}} = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |E(x,y)|^2 dx dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |E(x,y)|^4 dx dy}$$ \hspace{1cm} (5)

where $E(x, y)$ is the optical mode field distribution

3.4. Effective Mode Field Diameter Definition
Effective Mode Field Diameter defined as:

$$d_{\text{eff}} = \frac{\int_{-\infty}^{\infty} E_l^2 rdr}{\int_{-\infty}^{\infty} |E_l^2 rdr|^2} = \sqrt{A_{\text{eff}}} = \frac{2}{\sqrt{\sqrt{A_{\text{eff}}}}}$$ \hspace{1cm} (6)

where $E(r)$ is the optical mode field distribution

4. FIBER LOSS MODELS
4.1. Fiber Propagation Loss Definition
The total fiber loss can be divided into fiber induced losses and material losses. Material losses include Rayleigh scattering, ultraviolet, infrared absorption, and hydroxyl absorption losses. Material losses are the restraining losses in fibers. Fiber loss is defined as the ratio of the output optical power P_{out} from a fiber of length L to the input optical power P_{in}.
The symbol α is commonly used to express loss in
\[\frac{dB}{km} = 10 \log \left(\frac{P_{in}}{P_{out}} \right) \] (7)

4.2. Rayleigh Scattering Model

Light transmitted through the fiber suffers scattering loss due to rough appearance of atoms or molecules of the glass fiber, which is known as Rayleigh scattering loss. The fiber loss is expressed in $\frac{dB}{km}$ through [2]:
\[\alpha = \frac{A}{A^2} \] for a single-component glass such as SiO_2. $A = \frac{8n^3}{3} \left(\frac{n_0P^2}{\beta k T} \right)$; Where n_0 is the refractive index, p is the photoelastic coefficient, β is the thermal compressibility, k is the Boltzmann coefficient, and T is the absolute temperature of the sample.

4.3. Macrobending Loss Model

The macrobending loss is a radiative loss occurs when the fiber bend radius is large compared to the fiber diameter. It is defined as usual by $P(Z) = P(0)e^{-\gamma z}$; where $P(0)$ is the input power and $P(Z)$ is the output power at distance z respectively.

There are two models for Macrobending. The first uses the closed-form integral formula [3]. Using this the macrobending power loss coefficient is expressed as a function of the bending radius R_b in the form:
\[\gamma = \frac{\sqrt{\nu} P_{c,1}}{2\pi c (k_{\nu=1}(W)k_{\nu+1}(W)-k_{\nu}(W))} \exp \left(\frac{-4\Delta W^3 R_b}{3 \nu c^2 \nu} \right) \] (8)

The parameters appearing above are given by:
- $V = K_{0}c \sqrt{N_{\text{max}}^2 - N_{\text{clad}}^2}$ is the normalized dimensionless frequency;
- $W = r_c \sqrt{B^2 - (K_0 N_{\text{clad}})^2}$; $\Delta = \frac{(N_{\text{max}}^2 - N_{\text{clad}}^2)}{2N_{\text{max}}^2}$, where r_c designates the fiber core radius, N_{max} is the maximum refractive index and N_{clad} is the cladding refractive index, β is the mode propagation constant, K_0 is the propagation constant in vacuum, ν is the azimuthal mode number, $s = 2$ if $V = 0$ or $s = 1$ if $V \neq 0$ and K_0 is the modified Bessel function of the second kind of order ν.

Second macrobending loss model is expressed as [4]:
\[\gamma = \left(\frac{n\nu^2}{16\pi r_c R_b W^2} \right)^{1/2} \exp \left(\frac{-4\Delta W^3 R_b}{3 \nu c^2 \nu} \right) \int_0^{\infty} \frac{F_0 R_b}{R} \frac{dR}{R} \] (9)

where F_0 is the radial field of the fundamental mode.

\[f = \frac{N_{\text{max}}^2 - N(R)^2}{N_{\text{max}}^2 - N_{\text{clad}}^2} \] and $N(R)$ is the refractive index profile of the fiber. The other parameters are given above. The two models give similar results for step-index fibers. The loss coefficient γ can be converted to loss in $\frac{dB}{km}$ units as follows:
\[\alpha_{\text{macro}} = \frac{10}{L} \log \left(\frac{P_{in}}{P_{out}} \right) = \frac{10}{L} \log[\exp(\gamma L)] = \frac{10}{\ln(10)} \gamma \] (10)

4.4. Microbending Loss Model

Microbending loss is also a radiative loss in fiber resulting from mode coupling caused by random microbends, which are repetitive small fluctuations in the radius of the curvature of the fiber axis. An approximate expression for the attenuation coefficient is given by [5]:
\[\alpha_{\text{micro}} = A (k n_1 d_n^2)^2 (kn_1 d_n^2)^{2p} \]

where A is a constant, d_n is the near field diameter, n_1 is the core refractive index, k is the free space wave number, and p is the exponent in the power law.
4.5. Splice Loss Model

A splice is a joint (dielectric interface between two optical fibers). Any refractive index mismatch will produce reflection and refraction at any point in this interface. For splicing calculations, we assume that the mode field of single-mode fiber is nearly Gaussian. The coupling losses for the splice can be calculated by evaluating the connection between two misaligned Gaussian beams. Based on the above model, the coupling loss between two single mode fibers is given by [6]:

$$\alpha_{\text{splice}} = -10 \log \left(\frac{16n_{1}^{2}n_{2}^{2}}{(n_{1}+n_{2})^{4}} \sigma_{q}^{\infty} \exp \left(-\frac{\rho u}{q} \right) \right)$$ (11)

where $\rho = \frac{(k_{1}^{w})^{2}}{2}$; $q = G^{2} + \frac{(\sigma+1)^{2}}{4}$

$$u = (\sigma + 1)F^{2} + 2\sigma FG \sin \theta + \sigma \left(G^{2} + \frac{\sigma+1}{4} \right) \sin^{2} \theta; F = \frac{x}{k_{1}^{w} \lambda}; G = \frac{x}{k_{2}^{w} \lambda}; \sigma = \left(\frac{w_{2}}{w_{1}} \right)^{2}; k = \frac{2\pi n_{2}}{\lambda}$$

where n_{1} Core refractive index of the fiber, n_{2} Refractive index of the medium between the two fibers, λ is Wavelength, w_{1} is Near field mode field radius of transmitting fiber, w_{2} is Near field mode field radius of receiving fiber, x is Lateral offset, z is Longitudinal offset, θ is Angular misalignment

5. FIBER BIREFRINGENCE MODELS

5.1. Fiber Birefringence Definition

The difference between the propagation constants of the polarization Eigen modes is defined as fiber birefringence, that is: $\Delta \beta = \beta_{x} - \beta_{y}$.

The Differential Group Delay per unit length is defined by:

$$\partial \tau = \frac{\partial \Delta \beta}{\partial u} = -\frac{\lambda^{2}}{2\pi \epsilon} \frac{\partial \Delta \beta}{\partial x}$$ (12)

5.2. Intrinsic Perturbations Birefringence

Intrinsic perturbations are generally have a huge impact in step index fibers only and they are exist during the manufacturing process and are permanent feature of the fiber. They include a noncircular core and nonsymmetrical stress fields in the glass around the core region. A noncircular core results in geometrical birefringence, whereas a nonsymmetrical stress field results in stress birefringence.

5.3. Elliptical Core Birefringence Definition

The geometrical variation of a non-circular core introduces a linear birefringence in the optical fiber. This birefringence depends strongly on normalized frequency V, at which the fiber is being operated. The ellipticity (non circularity) of the core is defined by the parameter ϵ and $\epsilon = 1 - \frac{a}{b}$ Where a, b are the minor and major axis of the elliptical core respectively. The birefringence induced by an elliptical core is linear. In the case of a step index fiber, the birefringence $\Delta \beta_{ell} = \beta_{x} - \beta_{y}$ is given by [7]:

$$\Delta \beta_{ell} = \epsilon n_{1}k_{0}\Delta^{2} G(V)$$ (13)

where $\Delta = \frac{n_{1} - n_{2}}{n_{1}}$ is the refractive index difference between the core and the cladding.

The wave propagation constant is $k_{0} = \frac{2\pi}{\lambda}$; The function $G(V)$ in the birefringence formula is

$$G(V) = \frac{w^{2}}{w^{4}} \left[U^{2} + (U^{2} + W^{2}) \left(\frac{J_{0}(U)}{J_{1}(U)} \right)^{2} + UW^{2} \left(\frac{J_{0}(U)}{J_{1}(U)} \right)^{2} \right]$$ (14)

With the following definitions of waveguide parameters

$$U = a \sqrt{n_{1}^{2} k_{0}^{2} - \beta^{2}}$$ (15)
where a is the core radius.

The Differential Group Delay per unit length is

$$\partial \tau_{\text{ell}} = \frac{mn}{c} \frac{d}{dv}[VG(V)]$$

where c is the speed of light in vacuum.

5.4. Extrinsic Perturbations Birefringence

Birefringence can also be formed in a fiber when it is imperiled to external forces in handling or cabling. Such extrinsic sources of birefringence comprise of lateral stress, fiber bending and fiber twisting. All three of these mechanisms are usually present to some extent in coiled and field-installed telecommunications fiber.

5.5. Lateral Stress Birefringence Definition

When two forces of equal and opposite in magnitude ‘p’ act across an axis of a fiber with a diameter d, the birefringence persuaded is linear. The firm axis of birefringence is aligned with the axis represented by the two opposite forces. The birefringence is given by [7]:

$$\Delta \beta_{\text{lateral stress}} = -8 \frac{C' m_0}{\pi d} \left[1 - \left(\frac{a}{d} \right)^2 H(V) \right]$$

here C' is Photo elastic constant, ‘p’ is Lateral force, k_0 is Wave propagation constant in vacuum, ‘d’ is The outer diameter of the fiber, ‘a’ is the average core radius. Internal stress birefringence definition. The Differential Group Delay per unit length $\partial \tau_{\text{lateral stress}}$ is:

$$\partial \tau_{\text{lateral stress}} = -8 \frac{C' m_0}{\pi c d} \left[1 - \left(\frac{a}{d} \right)^2 H(V) + V \frac{dH(V)}{dv} \right]$$

5.6. Bending Birefringence Definition

Linear birefringence is a result of bending on a fiber with a bending radius $R >> a$ (fiber core). The firm axis of birefringence is at a right angle to the bending plane.

The slow axis is aligned with the bending radius.

The birefringence is given by [7]:

$$\Delta \beta_{\text{Bending}} = -\frac{1}{8} \left(\frac{d}{a} \right)^2 \frac{E C m_0}{\pi d} \left[1 - \frac{1}{3} \left(\frac{a}{d} \right)^2 H(V) \right]$$

With ‘R’ being the bending radius, and ‘d’ is the outer diameter of the fiber, ‘E’ is The Young modulus, ‘C’ is Photoelastic constant, ‘k_0’ isWave propagation constant in vacuum, ‘a’ is the average core radius and. The Differential Group Delay per unit length is:

$$\partial \tau_{\text{Bending}} = -\frac{EC}{8} \left(\frac{d}{a} \right)^2 \left[1 - \frac{1}{3} \left(\frac{a}{d} \right)^2 H(V) + V \frac{dH(V)}{dv} \right]$$

6. POLARIZATION MODE DISPERSION MODELS POLARIZATION MODE DISPERSION

Propagation constants of the two polarization Eigen modes that are degenerate in ideal single-mode fibers, in real telecommunications fibers, perturbations performance on the fiber in a way that it induces a birefringence. Consequently, when a pulse is made to transmit through a fiber, it results in a differential group delay between the two polarization Eigen modes. The stochastic behavior of these perturbations results in a phenomenon of random mode coupling which makes impossible about differential group delay.
6.1. Principal States of Polarization

The Principal States of Polarization model [8] is based on the observation that at any given optical frequency, there occurs a set of two mutually perpendicular input principle states of polarization for which the corresponding output states of polarization are independent of frequency. The Differential Group Delay resulting from Polarization Mode Dispersion is then defined between the two output Principal States of Polarizations.

The birefringence in telecommunication single-mode fibers varies arbitrarily along the fiber length, a product of variation in the drawing and cabling process. Furthermore, due to the temperature dependence of many of the fluctuations that present in the fiber during manufacturing, the transmission properties typically change as ambient temperature changes. In practice, these perturbations in temperature strongly affect Polarization mode dispersion time evolution. To assess properties of long fiber distances, one can adopt a statistical approach. In this case of long distance fibers, the polarization Eigen states can only be defined nearby and the birefringence vector has to be stochastic.

6.2. Dispersion Vector

In the time domain, the Polarization Mode Dispersion induces a time shift between the two Principal States of Polarization. In the frequency domain, the output PSPs undergoes a rotation on the Point care sphere about an axis connecting the two PSPs. The rate and direction of rotation is given by the dispersion vector \(\Omega(\omega, z) \) given by:

\[
\Omega(\omega, z) = \Delta \tau P_b
\]

where \(P_b \) represents the negative output principal state.

The strength of the dispersion vector \(\Omega(\omega, z) \) is equal to the differential delay time \(\Delta \tau \) between the two output principal states, where its combined Stokes vector corresponds to the Stokes vector of the negative output principal state. The direction of the Dispersion Vector \(\Omega \) defines an axis whose two intercepts with the surface of the Poincare sphere correspond to the two principal states of polarization at the fiber output.

The Poincare sphere is a graphical tool that allows convenient description of polarized signals and polarization transformations during propagation. A point within a unit sphere can uniquely represent any state of polarization, where circular states of polarization are located at the poles. The coordinates of a point within or on the Poincare sphere are the normalized Stokes parameters.

6.3. Effect of nonlinear Refractive Index

Usually one of the design goals when constructing a fiber is to minimize its nonlinearities. The effective nonlinear coefficients of optical fibers depend on the nonlinear indices of the bulk materials building the fiber and on its wave guiding properties: shape of modes, degree of confinement, etc. As a result it can vary within broad limits. The effective nonlinear coefficient are represented as [9]:

\[
n_2^{eff} = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} n_2(x,y) F(x,y)^4 dx dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x,y)^2 dx dy}
\]

where \(n_2(x,y) \) is the user-defined spatially dependent nonlinear refractive index of the various fiber layers and \(F(x,y) \) is the normalized mode field pattern.

7. SIMULATION

The simulation is done having the view of the following parameters:
Refractive Index Profile; Four regions are considered; Wave Length 1.3 \(\mu m \)

Region 0
Starting Index: 2.4437, Ending Refractive Index 1.6673, Width 4.2\(\mu m \), user function
Position 4.2 \(\mu m \) with linear function and steps 20

Material Properties
Host- pure Silica, Dopant + is 3.1% germanium doped silicon,
Dopant – is 1% Fluorine doped silica

Region 1
Starting Index: 1.4437, Ending Refractive Index 1.4437, Width 2.5\(\mu m \), with constant function and Refractive Index 1.4437, Position 6.7 \(\mu m \) linear function steps 1

2D Optical fiber Wave guide design for Multi haul Applications (Venkata Raghavendra Miriampally)
Region 2
Starting Index: 1.44778, Ending Refractive Index 1.44778, Width 6.75µm, with user function and Position 13.45 µm linear function steps 30

Region 3
Starting Index: 1.44692, Ending Refractive Index 1.44692, Width 49.05 µm, with constant function and Refractive Index 1.4437. Position 62.5 µm linear function steps 1

As we know that for step index fibre there is always a sudden change in the refractive index profile at the interface between core and cladding materials, which is considered during the manufacturing of the fibre. This can be clearly observed in the Figure 3.

Modal Index defines the phase delay per unit length for optical energy propagation in a waveguide. In optical fibre, the guided Light experiences a phase delay along the propagation direction which depends on both Index of Refractions of the Core and the Cladding material. The variation of Modal Index with wavelength can be seen in Figure 4.

Group delay is the time delay of the amplitude envelopes of the various frequency components of a signal through an optical fibre. Figure 5 plots the variation of Group delay with wavelength.

In optical fibres we have two types of dispersions namely wave guide and material, from the observation it has been seen that there is a maximum in total dispersion which is the sum of the above two types of dispersions at almost 1.47µm of wave length depicted in Figure 6.

The MFD is used to expect fiber splice loss, bending loss, cutoff wavelength, and waveguide dispersion of an optical fiber, it is determined from the mode-field distribution of the fundamental fiber mode and is a function of the optical source wavelength, which is represented in Figure 12.

The variation of Micro and macro bending loss is clearly represented in Figure 9. When a pulse is transmitted through the single mode fiber it has to be completely confined within the fiber itself, which has been represented in Figure 11.

The average value of all differential group delays is known as polarization mode dispersion and how this varies with wavelength is shown in Figure 14.
2D Optical fiber Wave guide design for Multi haul Applications (Venkata Raghavendra Miriampally)
Figure 9. Bending Loss vs. Wavelength

Figure 10. Splice Loss vs. Wavelength

Figure 11. Confinement

Figure 12. Mode field Diameter

Figure 13. Birefringence vs. Wavelength

Figure 14. Polarization Mode Dispersion vs. Wavelength

Figure 15. Effective Cladding Refractive Index vs. Wavelength
8. CONCLUSION

This paper has explained the concept of propagation of light with the two-dimensional design of optical fiber. The parameters such as effective group delay, dispersion, Modes, Material Loss, Bending Loss, Splice Loss, Mode field, Birefringence, Polarization Mode Dispersion (PMD), and Effect of nonlinear Refractive Index are clearly explained and finally designed the optical fiber model with all the above mentioned parameters.

REFERENCES

BIOGRAPHY OF AUTHOR

Dr. Venkata Raghavendra Miriampally, working as Associate Professor, Department of Electrical Engineering, Adama Science & Technology University, Adama, Ethiopia. He has received his PhD from Singhania University, Rajasthan in Optical Communication & M.Tech Degree from Electronics & Communication Engineering Dept, College of Engineering, Andhra University. His main research includes signal estimation & evaluation of optical communication, Satellite communication & Microwaves. He has published 16 papers in reputed national & international Journals. He has participated in 3 conferences. He is a life member of IE, ISTE & ISIO.